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1.0 PROJECT OVERVIEW
1.1 Introduction

The current report summarizes the fourth year of technical developments on
the NESSUS system for Probabilistic Structural Analysis Methods. The
described FY'88 effort focused on the continued expansion of the
Probabilistic FEM code, the implementation of the Probabilistic Boundary
Element Method (PBEM), and the implementation of the Probabilistic
Approximate Methods (PAppM) code.

The team for this past year’s effort included the following individuals and
organizations:

SWwRI: Dr. T.A. Cruse
Dr. O.H. Burnside
Dr. Y.-T. Wu
Dr. S.T. Raveendra
Dr. S.V. Harren
Dr. R.C. McClung
Mr. H.R Millwater
Ms. J.P. Buckingham
Consultant: Mr. J.B. Dias
University of Arizona: Prof. P. Wirsching

Mr. Y. Torng
Rocketdyne: Dr. K.R. Rajagopal

The report focuses on changes and additions to the NESSUS system, and does
not cover the work performed prior to FY'88; that work are covered in the
previous versions of this annual report.

1.2 Summary of Major FY'88 Accomplishments

The principal focus for the PFEM code in FY'88 was the addition of a
multilevel structural dynamics capability. The strategy employed for the
structural dynamics code was developed by Dr. James Unruh at SwRI,
including consultations with the staff at Rocketdyne. The strategy
includes a Level 0 model (probabilistic loads), Level 1 (parametric
treatment of material, geometry uncertainty), and Level 2 (full
probabilistic variables). The details of these levels is covered in
Chapter 3. The implementation details within the FEM package are covered
in Chapter 2.

The probabilistic methods research is reported in Chapter 4. The focus of
this work was to further validate the Fast Probability Integration
algorithm, developed by Dr. Wu of SwRI, and to introduce the integrated
FPI/Monte Carlo capability. The addition of Monte Carlo meets the contract
requirement for two independent probability methods in NESSUS.



Chapter S is concerned with the NESSUS/EXPERT module. The EXPERT module 1is
to address critical issues of the user interface for NESSUS. Continued
effort was devoted to the menu structure, error checking, and HELP file
portions of NESSUS/EXPERT. Extension of EXPERT to include the
probabilistic variables was made in FY'88. The users continue to acquire
applications knowledge for additions to the rule base of NESSUS/EXPERT.

Chapter 6 addresses the significant amount of work performed on the
Probabilistic Boundary Element Code (PBEM) to add it to the NESSUS
framework. Particular focus was given to the use of domain integration
methods that reduce the domain integral to "equivalent"” boundary integrals.
These were implemented for thermal and steady-state dynamic loading,
inhomogeneous material properties and plasticity.

Four additional validation problems were completed in FY‘88, and are
reviewed in Chapter 7 and Appendix F. The validation results continue to
demonstrate the robust character of the NESSUS code over a wide range of
analysis types.

Rocketdyne reports in Chapter 8 on the extensive verification work
accomplished on Problem 1 (Turbine Blade) and Problem 2 (Oxidizer Duct).
Both application focused on structural dynamics issues; the first for
normal mode vibration, and the second for forced, random vibration.
Experimental data existed for the first problem and showed good
confirmation of the NESSUS predictions.

One of the potentially-powerful tools developed within the NESSUS framework
are the approximate methods. These methods show promise for giving a quick
understanding of what design variables are driving the uncertainty in
system response variables. The applications problems and the technical
approach are outlined in Chapter 9.

The Level 3 stochastic thermoviscoplastic material model development is
summarized in Chapter 10. The elements of the algorithm are developed in a
generalized manner, and implemented for elasticity + creep, with void
growth failure. Application of probabilistic methods to history dependent
problems such as this require special attention to account properly for the
history dependence of the subject problem.

Significant contributions on the Reliability Methods used in PSAM have been
prepared by the University of Arizona (under the direction of Prof. Paul
Wirsching) are included in the Appendices. Validation studies for
approximate methods are also included. A special study of the efficiency
and functioning of the NASA-sponsored BEST3D code is summarized in Appendix
H.

1.3 Future Effort

FY’'89 is the final year of the current technical effort. The code
development effort will be completed and documented. The full nonlinear
material and geometric features will be implemented. Application of the
NESSUS code will be made to the oxidizer post (creep) and the transfer duct
(large deflection) problems.



The next major FEM code delivery is expected to be in February of 1989.
Final FEM coding will be done in May. The verification studies for the
PBEM and PAppM codes will be completed.

Continued effort into FY'90-'92 has been proposed. The principal focus of
that effort is on the development of a comprehensive package for full
reliability evaluation. Damage state, failure criteria, and probabilistic
structural analysis models will have to be combined.

1.4 Publications

The following papers and presentations were accomplished during the past
year:

1. "Designing for an Uncertain World," T.A. Cruse, accepted by Aerospace
America.
2. wyalidation of the NESSUS Probabilistic Finite Element Analysis

Computer Program," Y.-T. Wu and 0.H. Burnside, 29th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, Williamsburg, Virginia, April 18-20, 1988.

3. "NESSUS/EXPERT - An Expert System for Probabilistic Structural
Analysis Methods Methods," H.R. Millwater, K. Palmer, and P. Fink,
29th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, Williamsburg, Virginia, April 18-20, 1988.

4, "Efficient Probabilistic Structural Analysis Using an Advanced Mean
Value Method,” Y.-T. Wu and O.H. Burnside, 1988 ASCE Specialty
Conference, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia, May 25-27, 1988.

5. "Probabilistic Methods for Structural Response Analysis,” Y.-T. Wu,
O0.H. Burnside, and T.A. Cruse, ASME Symposium on Computational
Probabilistic Methods, UC-Berkeley, California, June 20-22, 1988.
(Also pending publication in COMPUTATIONAL METHODS OF RELIABILITY
ANALYSIS, edited by Wing Kam Liu and Ted Belytschko, Elmepress
International).

6. "Probabilistic Structural Analysis Methods and Applications,” T.A.
Cruse, J.B. Dias, and K.R. Rajagopal, Symposium on Advances and Trends
in Computational Structural Mechanics and Fluid Dynamics, Washington,
DC, October 17-19, 1988.

7. "Probabilistic Structural Analysis for Advanced Space Propulsion
Systems," T.A. Cruse, J.F. Unruh, Y.-T. Wu and S.V. Harren. Submitted
to the 24th International Gas Turbine Conference, ASME.

A bound volume of this and other PSAM related material has been forwarded
to the NASA Program Manager.






2.1

2.0 NESSUS FINITE ELEMENT CODE DEVELOPMENT

Introduction

The NESSUS finite element code is being developed within the framework of
the probabilistic structural analysis (PSAM) development effort,
coordinated by Southwest Research Institute for the NASA Lewis Research

Center.

The main objective of this effort is the development of advanced

probabilistic structural analysis methods, which combine the versatility of
modern finite element methods with the latest developments in the areas of
probabilistic modeling and structural reliability.

2.1.1 Status at the End of FY’'87

Much of the development effort during FY'87 was geared towards providing
more sophisticated analysis capabilities for dealing with complex
engineering problems. The major development tasks included:

(o]

o

Extension of the iterative perturbation algorithms for linear
elastostatics to a three field mixed-iterative finite element
formulation.

Development of a consistent strategy for tracking several
perturbations across multiple increments of static loading.

Extension of the stochastic eigenvalue capability to account for
random initial stress fields and the associated stress-stiffening
effects.

Development of a new family of continuum-type finite elements based
on independent strain interpolation.

Development of finite deformation algorithms for handling
deterministic problems involving geometric nonlinearities.

Extended facilities for database manipulation and management.

By the end of FY'87 the NESSUS finite element code offered sophisticated
modeling capabilities for handling a wide range of probabilistic
elastostatic and eigenvalue problems. NESSUS 2.5 was released to the
members of the PSAM team in September ‘87 and was being exercised on
several validation and verification problems by the end of FY‘87. This
version supported the ability to carry perturbation results across
multiple static load increments, and to perform dynamic eigenvalue
problems using the initial stress field computed at any one of these
increments. This version also included a full library of continuum
elements based on independent strain interpolation. The ability to
perform elastostatic analysis for the perturbed problem using either the
displacement method or the mixed-iterative formulation was fully
supported in this version of the code.

4



2.1.2 Code Deliveries in FY’88

Linear dynamics problems were the focus of much of the development
effort in the NESSUS finite element code during FY'88. Other
significant developments included buckling problems, Level 1 analysis
and transient dynamics.

NESSUS 2.6 was released to the members of the PSAM development team in
December ‘87. This version included an alternate algorithm for the
solution of the perturbed dynamic eigenvalue problem, allowing the
computation of accurate results in problems where the available number
of unperturbed modes is inadequate for the use of a perturbation
expansion series.

NESSUS 2.7 was released to the members of the PSAM team in January ‘88.
This version introduced the ability of solving stochastic linearized
buckling eigenvalue problems for structures with uncertain geometric
imperfections, material properties and load patterns.

NESSUS 3.0 was released to the members of the PSAM team in May ‘88.

This version included an extensive redesign of the harmonic and random
vibration capabilities, support for the extended database format, and
the ability to perform probabilistic harmonic and random vibration
analyses for uncertain structural systems subjected to uncertain loading
environments.

NESSUS 3.1 was released to the members of the PSAM team in August '88.
This version included the Level 1 perturbation post-processor, together
with a more closely integrated implementation of the FPI analysis
module. A new automated frequency band discretization scheme to
facilitate input definition for random vibration analysis was also
introduced in this version.

The development of a perturbation strategy for transient elastodynamics
was nearing completion by the end of FY'88. However, this capability is
not yet available in the released version of the NESSUS finite element
code.

2.1.3 Operating Systems

Special versions of the NESSUS finite element code have been developed
to support a number of different operating systems. NESSUS 3.1 is
currently available under the following widely used operating systems:

o} The VAX/VMSTM Operating System.
o A standard UNIXTM version using Berkeley 4.2 extensions.
o The CRAY/COSTM Operating System.

o The CRAY/UNICOSTM version of UNIXTH.

w



The NESSUS finite element code is written in standard FORTRAN-77. In
order to enhance portability, all system-dependent functions are
intentionally encapsulated in a small set of system routines which must
be customized for the individual operating system. These
system-dependent routines perform tasks such as obtaining the calendar
date and time, keeping track of central processor usage ("computer
time"), and controlling file opening and closure.

A set of command procedures and editor scripts used to generate
customized versions of the NESSUS finite element code for different
operating systems has also been developed. These utilities are written
in the DCLIM command language and run under the VAX/VMSTM Operating
System [1].

2.2 Buckling Analysis of Uncertain Systems

Structural stability (buckling) problems are well-known to exhibit a great
degree of sensitivity to initial imperfections in the geometry, the
boundary conditions and the imposed load pattern. As these imperfections
may result from fabrication tolerances, initial straining during assembly,
and even from damage incurred during storage and transport of the
components, the nature and distribution of these imperfections is rarely
the same for all samples, and very often can only be described in
statistical terms.

Although the effects of initial imperfections are more clearly observed in
a formal finite deformation nonlinear buckling analysis, the study of a
simpler linearized buckling eigenvalue problem often provides a good
first-order approximation to the behavior of the real structure.

Therefore, the solution of the stochastic version of the linearized
buckling eigenvalue problem for random initial imperfections remains a more
cost-effective way to provide useful engineering information on the
buckling behavior of real structures.

Typical perturbation methods for linearized eigenvalue problems [2,3] are
based on regular perturbation expansions of the perturbed eigenvalues and
eigenvectors in terms of the solution to the unperturbed eigenproblem. The
objective is to obtain a linear combination of the unperturbed modes which
{s, in some sense, close to the solution of the perturbed problem. A key
assumption for this class of methods is that the set of unperturbed modes
must be sufficiently "rich" to adequately represent a "good” approximation
to the solution of the perturbed eigenproblem.

VAX/VMS and CDL are trademarks of Digital Equipment Corporation.
UNIX is a trademark of AT&T Bell Laboratories.
CRAY/COS and UNICOS are trademarks of Cray Research, Inc.
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This assumption is not overly restricti > when dealing with typical dynamic
eigenvalue problems, in which a sufficiently large number of unperturbed
modes are usually available. By contrast, in a standard buckling
eigenvalue problem, only the lowest mode (or at most a few of the lowest
modes) are of practical interest to the analyst. As a result, the
available set of unperturbed modes is hardly adequate for the use of a
perturbation expansion approach.

The strategy adopted in the NESSUS finite element code for the solution of
the perturbed linearized buckling eigenvalue problem amounts to a "smart"
subspace iteration re-solution of the perturbed problem. With this
approach, the converged vectors for the unperturbed problem are used as the
initial trial vectors for subspace iteration with the perturbed system.
Because the unperturbed vectors typically represent a "good guess”™ to the
actual mode shapes of the perturbed system, the subspace iteration
algorithm will tend to converge on the exact solution to the perturbed
problem with a reduced number of subspace iterations. Although this
strategy cannot avoid the re-factorization of a large stiffness matrix at
every perturbation, it allows very accurate computation of the solution the
perturbed problem even when only one unperturbed buckling mode is
available.

This strategy was first implemented in NESSUS 2.6 as an optional algorithm
for solving dynamic eigenvalue problems when the number of unperturbed
modes is insufficient for the use of a perturbation expansion approach.
The ability to solve stochastic linearized buckling eigenvalue problems
using this approach was first introduced in NESSUS 2.7. The present
implementation allows some flexibility regarding the choice of the initial
stress field used to construct the geometric stiffness matrix for the
perturbed buckling problem, which can be obtained using either a
displacement-based or mixed-iterative stress recovery procedure.

2.3 Revised Linear Dynamics Capability

Methods of linear dynamics based on mode superposition techniques are
widely used in aerospace applications for predicting the response of
elastic structures subjected to harmonic and random excitations. These
results are particularly useful for the estimation of low and high-cycle
fatigue life of components exposed to severe vibration environments.

The ability to perform basic harmonic and random vibration analyses for
deterministic structures has been available in the NESSUS finite element
code since version 1.0. However, a review of the existing code
capabilities by Rocketdyne in the Winter of '87 indicated the desirability
of developing a more sophisticated analysis capability. The desired
enhancements included:

o A more flexible and general input format for linear dynamics.

o The ability to include multiple cases of harmonic and random
excitation within a single computer run.



o Presentation of harmonic excitation results in terms of real and
imaginary components and/or phase and amplitude information.

o Harmonic base excitation input in terms of acceleration, not
displacement.

o Random base excitation input also in terms of acceleration.

o An extended perturbation database format allowing for combination of

different dynamic response cases as a post-processing operation.

The Rocketdyne recommendations were reviewed by SwRI and incorporated in a
specification for an extended linear dynamics capability in the NESSUS
finite element code. This revised linear dynamics capability was first
offered in NESSUS 3.0. One further enhancement, the automated frequency
band discretization scheme, was added in NESSUS 3.1.

2.3.1 Harmonic Excitation Problems

The revised linear dynamics capability allows for the analysis of an
arbitrary number of harmonic excitation cases at multiple driving
frequencies. Each harmonic excitation case consists of a single or
nultiple point excitation at a prescribed driving frequency, with the
amplitude and phase of the excitation specified individually at the
nodes. These excitations can be of three types:

o Harmonic point load excitations.
o Harmonic base acceleratiouns.
o Harmonic nodal pressure excitation.

Harmonic point load excitations are sinusoidal forces of the form
fi(w)=fj ei(@i-¢) (2.1)

where ?, is the amplitude and ¢; the phase of the excitation at a

frequency w. These loads are applied at the nodes of the finite
element model, and can have active components in one or more spatial
directions. Both the amplitude and phase of the excitation may be
different for each component. Harmonic base excitations are prescribed
sinusoidal base accelerations of the form

u'j(a))zi'fj- ei(wr-¢) (2.2)

where E, is the amplitude and ¢, the phase of the excitation at a

frequency w. These accelerations are also applied at the nodes of the
finite element model, and can have active components with different
phase and amplitude in each spatial direction. A penalty-type approach
is used to impose prescribed base accelerations, which are then



converted to a set of equivalent nodal forces using D'Allembert’s
Principle. Harmonic nodal pressure excitation involves sinusoidal
time-varying surface pressures of the form

Gij(w)=f; fj pyj(w) psd () (2.3)

where p, is the amplitude and ¢, the phase of the excitation at a

frequency w. This option is only available for meshes of
continuum-type elements, having well defined outward normals at each
surface node. The harmonic pressures are specified over a list of
surface nodes and act in the direction opposite to the outward normal at
each node. The amplitude and phase of the pressure can be specified
individually at each node, resulting in an arbitrary spatial pressure
pattern which varies sinusoidally in time.

The output for each harmonic excitation case includes:

o The harmonic excitation frequency.

o The real and imaginary parts of the displacements.
o The real and imaginary parts of the strains.

o The real and imaginary parts of the stresses.

These quantities are sufficient to completely describe the harmonic
response of the system at a given driving frequency. Additional
response information, such as the amplitude and phase of a given
response variable at a point, can easily be derived from these results
with a simple post-processing operation. Many of the programs used to
access data stored in the perturbation database are also capable of
performing similar types of data reduction.

The results for each harmonic excitation case are computed separately
and stored individually in the perturbation database. A number of
different case combination rules can then be used for post-processing
this information in order to obtain the desired low and high cycle
fatigue life predictions.

2.3.2 Random Vibration Problems

The revised linear dynamics capability also included several
enhancements to the random vibration drivers in the NESSUS finite
element code. The newer versions of the code allow for the analysis
of an arbitrary number of power spectrum excitation cases within a
single run. Each power spectrum excitation case consists of a
user-defined PSD profile, specifying the power of the excitation as a
function of the frequency, a spatial distribution, indicating the
location and intensity of the excitation, and an optional correlation
model, which may or may not be frequency-dependent. This model is
sufficiently general to describe any zero-mean Gaussian excitation
which is separable in frequency and space, that is to say, which can



be modeled as the product of two functions: one defined over

frequency, the other over space. There are three types of power
spectrum excitations:

o Random point load excitations.
o Random base accelerations.
o Random nodal pressure excitations.

Random point load excitations correspond to a forcing function which
can be described by a one-sided spectral density function of the form

Gij (@) = ii; ifj pij(®) psd (@) (2.4)

where f,and f, denote the local intensities of the random loading at

nodes i and j, p,(w) is the correlation between nodes i and j, and
PSD (w) represents the normalized power of excitation at frequency
w. These excitations may have active components in one or more
spatial directions. Random base accelerations are described by
spectral density functions of the form

Gij (@) =p; pj pij(®) psd (@) (2.5)

where u, and u, denote the local amplitudes of the imposed base

acceleration at nodes i and j, respectively. These excitations may
have active components in one or more spatial directions. A
penalty-type approach is used to impose the prescribed random base
accelerations. Finally, random nodal pressure excitations are
characterized by spectral density functions of the form

pj((g):p_j ei(wr-¢;) (2.6)

where p, and B, denote the local magnitudes of the random pressure at

nodes i and j, acting in the direction opposite to the outward
boundary normal at the corresponding node. This option is only
available for meshes of continuum-type elements, having well defined
outward normals at each surface node.

Time-average mean square values of the response variables are
obtained by integrating the one-sided spectral density of each
response variable over a prescribed range of excitation frequencies.
The current code implementation provides very fine control over the
way these results are reported. By default, only the overall mean
square results integrated over the entire range of excitation
frequencies are reported. Alternatively, the user may chose to
compute and store a set of partial mean square results, each
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corresponding to a different range of excitation frequencies. This
allows a greater flexibility in the way results from different power

spectrum excitations are combined for the final post-processing
phase.

The output for each excitation frequency range includes:

o The excitation frequency range.

o The mean square displacement values.
o The mean square strain values.

o The mean square stress values.

o The stress velocity values.

These values are computed separately for each frequency range of
every power spectrum excitation case, and stored individually in the
perturbation database as distinct spectral response cases. Different
case combination rules can then be used for combining the results
from different power spectrum excitations to obtain the desired low
and high cycle fatigue life predictions.

2.3.3 Automated Frequency Band Discretization

The quality of the solution to a random vibration problem is very
dependent on the accuracy of the integration of the spectral density of
the response over the full range of excitation frequencies. This is
particularly important in the analysis of lightly damped systems, which
tend to exhibit very sharp response amplification "peaks" at the
resonant frequencies. Very often these "peaks" account for much of the
area under the spectral density function, and must therefore be
integrated with extreme accuracy.

Closed-form solutions have been developed for a single degree of freedom
oscillator subjected to idealized random excitations {1]. These results
have been generalized to obtain approximate closed-form integrals for
more realistic types of random excitation. However, for more complex
structures subjected to very general random excitation, one must resort
to methods of numerical integration.

All methods of numerical integration are based on sampling the integrand
at a discrete number of integration points. The density of the
integration points is related to the accuracy of the integration. It is
intuitively obvious that a smooth, slowly varying function can be
accurately integrated with relatively few integration points, whereas a
less smooth, rapidly varying integrand will require more frequent
sampling in order to achieve comparable accuracy.

In principle, it would be possible to determine an appropriate
integration step size based on the sharpest "peak"” of the frequency
response function, and to use that minimum step size uniformly
throughout the full range of excitation frequencies. Such a strategy
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would be certain to yield a very accurate result, but it would also fail
to take advantage of the smoothness of the frequency response function
away from the resonant frequencies.

A more efficient algorithm should be able to divide the entire frequency
band into a set of uneven intervals, using a smaller integration step
only in the neighbourhood of the resonant frequencies. The appropriate
step size at each resonant frequency can be defined as a fraction of the
half-power width of the resonant "peak" at that frequency, which is a
function of both the natural frequency and the damping ratio. Such a
strategy would permit tailoring the frequency band discretization to
achieve a very accurate integration with a much reduced number of
function evaluations.

It is important to note that the choice of the "optimal" frequency band
discretization requires advance knowledge of the resonant frequencies of
the system. Therefore, the "optimal" discretization can only be
determined after solving the dynamic eigenvalue problem for the system.
Furthermore, in the random vibration analysis of uncertain structures,
these natural frequencies will vary in response to random fluctuations
of the stiffness and mass of the structure, resulting in a different
"optimal" frequency band discretization for each realization of the
problem.

The strategy adopted for the NESSUS finite element code uses an adaptive
algorithm for automated frequency band discretization. The user is
asked to provide a set of coarse macro-frequency bands, which are in
turn subdivided into a number of smaller equally spaced intervals. In
addition, the user can also specify the minimum number of intervals to
be used for integrating the half-power band around each resonant "peak."
The code will then select an appropriate frequency band discretization
that meets all of the above criteria.

A typical frequency band discretization is shown in Figure 2.1. The
exact location and width of the two resonance half-power bands, denoted
by A and B in the figure, are determined internally by the code. In
this example, both are subdivided into four equal intervals. The least
damped "peak" will have a narrower half-power band, resulting in a
tighter integration step size. The half power bands from adjacent
resonances will sometimes overlap as shown in the figure. Below these
there are two additional bars, denoted by C and D, representing two
coarse macro-frequency bands defined by the user. The code will then
automatically generate the final frequency band discretization E such
that, at every frequency w,, the integration step size is no greater
than the minimum of the three step size criteria A, B and C directly
above.

Because the exact location and width of the half-power'bands at the
resonant frequencies are determined internally by the code, the
algorithm can respond to changes in natural frequency and damping by
adjusting the final frequency band discretization accordingly. Several
variable-order Gauss rules can be used to integrate the frequency
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response function within each integration step. These rules are known
for providing optimal accuracy for integrating polynomials with the
smallest number of function evaluations.

2.4 Linear Dynamics of Uncertain Systems

The linear dynamics capabilities discussed in the preceding section have
been extended to account for structures having random stiffness, mass and
damping characteristics. Uncertainties in the parameters defining harmonic
and random excitations can also be considered in the analysis. The ability
to perform harmonic and random vibration analysis for uncertain structures
was first introduced in version 3.1 of the NESSUS finite element code.

The effects of randomness in the structure are accounted for by computing
the changes in the natural frequencies and mode shapes induced by small
perturbations to the random parameters characterizing the structure. These
changes in natural frequency in mode shape will, in turn, affect the
dynamic characteristics of the system, and result in a different response
to harmonic and random excitations. In this manner one can determine how
uncertainties in the structure propagate to the response, and use of
standard probability analysis methods (such as fast probability
integration) to estimate the statistical characteristics of the response.

The analysis of uncertainties in the excitation parameters and damping 1is
somewhat simpler. These parameters have no effect on the natural
frequencies and mode shapes of the system and, therefore, need only be
accounted for in the frequency domain phase of the analysis. Many
conditional tests are built into the code to take full advantage of these
special cases by skipping most unnecessary computations without direct user
intervention.

2.5 Transient Dynamics of Uncertain Systems

The ability to perform transient elastodynamic analysis of uncertain
systems by direct time integration has been implemented in the development
version of the NESSUS finite element code. These capabilities will also be
available in the next release version of the NESSUS finite element code.

Probabilistic transient elastodynamics problems can be approached with the
use of perturbation algorithms for generating a set of parallel time
histories corresponding to small fluctuatioms of the random variables
present. These perturbed time histories provide information on how the
uncertainties in the problem parameters propagate through time and affect
the transient response at different points in time. It is interesting to
note that these uncertainties need not increase monotonically with time,
and will sometimes exhibit a nearly periodical reduction in uncertainty at
certain points in time. These points correspond to closely spaced
crossings of the unperturbed path by one or more perturbed time-histories
(Figure 2.2).
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The strategy used to generate perturbed time-histories is a generalization
of the elastostatic perturbation algorithm implemented in the NESSUS finite
element code. This algorithm is based on the use of the unperturbed
dynamic operator for the generalized Newmark-# family of integration
algorithms to construct an jterated series of approximations converging on
the solution to the exact perturbed problem. In order to preserve
consistency (i.e., in order to converge on the correct solution), the
position, velocity and acceleration at each increment must be tracked
separately for each perturbation. All of the perturbations are carried
forward in time within each time step.

Transient elastodynamics problems can be solved with the NESSUS finite
element using either a displacement-based finite element formulation or a
more elaborate mixed-iterative procedure. Preliminary experience with the
dynamic perturbation algorithm exhibited very good performance if used in
conjunction with the displacement method. As observed in the static case,
the mixed-iterative strategy usually requires a much smaller perturbation
size in order to achieve comparable performance. Although the mixed method
will perform reasonably well for much of the analysis, its performance
degrades significantly in increments where the direction of motion must be
reversed. The problem can be mitigated by reducing the step size for those
time steps. This negates one of the major advantages of the
mixed-iterative formulation for transient elastodynamics, which appears to
exhibit remarkably small algorithmic damping and phase error even at
relatively large time steps. By comparison, the displacement formulation
exhibits poorer accuracy in terms of algorithmic damping and phase error at
large time steps, but remains far more robust with respect to perturbation
size.

The current implementation can account for uncertainties in the stiffness,
mass, damping and initial conditions for the transient problem. The
effects of uncertainties in initial conditions will tend to become less
significant for long time scales, but may contribute significantly to the
response uncertainty during the jnitial start-up transient phase.

2.6 The Extended Database Format

The implementation of the revised linear dynamics capability in the NESSUS
finite element code originated a need to systematically organize and store
multiple cases of frequency response data corresponding to an arbitrary
number of harmonic and random vibration excitations.

Earlier versions of the perturbation database (Figure 2.3) consisted of one
pair of two-way linked lists. One of these contains the solutions to
eigenvalue problems for dynamic modes or buckling analysis. The other is
used to store the system'’s response at every increment or time step. This
format offered no provision for storing multiple cases of frequency
response data within a single increment. In addition, the format
envisioned for reporting some of these frequency response quantities (e.g.,
real and imaginary components) did not neatly fall into any of the standard
data types available in the database.
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Different approaches for incorporating multiple cases of spectral response
data into the existing framework of the perturbation database were

evaluated. The most promising solutions included the following three
options:

o To nest the frequency response data within each increment.

This option would provide a simple interface to the perturbation database
and allow for the storage of frequency response data for different initial
stress states, however, the resulting database format would be incompatible
with earlier database versions, and all database interfaces would have to
be rewritten. In addition, the efficiency of searching for a given block
of data could degrade significantly for very large databases.

o To branch a one-way frequency response data list from each increment.

This option would offer the best overall efficiency when searching for a
given block of data. The ability to store frequency response data at one
or more initial stress states would be retained. The new format would have
some degree of compatibility with earlier database versions, however, this
strategy would involve a far more complicated database interface, which
would be very cumbersome to modify later on.

o To introduce a third two-way linked list for frequency response data.

This option would retain a very simple database interface. It would also
offer the greatest degree of compatibility with earlier database versions.
The efficiency of searching for a given block of data remains very good,
however, a small loss of generality is incurred by restricting the storage
of frequency response data to a single prescribed initial stress state.

The third option appears to offer the most elegant and well-balanced
solution to the requirements for an extended database format, and was
selected for implementation in NESSUS 3.0. The extended database format
(Figure 2.4) consists of three two-way ordered linked lists terminated by
null pointers at the ends. Both the eigenvalue and eigenvector data list
and the incremental or time step data list are identical to those used in
earlier database versions, and remain fully compatible with the earlier
interfaces. A new spectral response case list was added, containing
results for both harmonic and power spectrum excitations. All lists are
used to store both unperturbed and perturbed values.

The database interface subroutines used in the FPI and PFEM modules were
rewritten to provide full support for the extended database format.

Several simple post-processing operations are built into this interface,
allowing the user to query for data not explicitly stored in the database,
but easily derived from the information present in the database. A new set
of database decoding and encoding utilities, fully supporting the extended
database format, were also included in the release of NESSUS 3.0.
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2.7 The Level 1 Post-Processor

The LEVELl module, introduced in NESSUS 3.1, is a software implementation
of the Level 1 perturbation analysis strategy formulated by Southwest
Research Institute. Level 1 analysis is based on the simplifying
assumption that the uncertainties in the problem can be adequately modeled
in terms of a set of global scalings of the applied force, stiffness and
damping matrices. Under these assumptions, the perturbed system response
may be obtained by applying appropriate scaling factors to an available
unperturbed solution. Therefore, this type of analysis can be performed as
a purely post-processing operation on the deterministic results stored in
the perturbation database.

A typical Level 1 analysis (Figure 2.5) involves the following steps:

Step 1: Run the deterministic problem using the FEM module and compute the
unperturbed solution. The total number of Level 1 random variables
should be specified in order to reserve the appropriate database slots,
but no perturbations are run at this stage.

Step 2: The FEM module writes the unperturbed solution to the perturbation
database, including a specified number of empty slots for the Level 1
random variables.

Step 3: The LEVELl post-processor is started. This program recovers the
unperturbed solution from the perturbation database and modifies it with
the appropriate scaling factors to generate the Level 1 perturbations.

Step 4: The resulting Level 1 perturbations are written back into the
perturbation database. The final result will be the original
perturbatioﬁ database expanded to include a new set of perturbations
generated by the LEVELl post-processor.

If necessary, steps 3 through 4 may be repeated several times.

It should be emphasized that Level 1 is a simplified type of analysis and,
as such, it is limited to a somewhat restrictive class of problems. The
analysis of more complex engineering problems will require the use of more
general perturbation methods. still, Level 1 analysis offers a quick and
efficient way to perform simple "what if..." experiments in order to get a
basic understanding of how such uncertainties would affect the behavior of
the response.

2.8 Additional Types of Random Variables

Several new types of random variables were introduced in the NESSUS finite
element code within the past year. Many of the new random variable types

are used to parametrize uncertainties pertaining only to dynamic problems,
which were the focus of attention of much of the recent development effort.

Earlier versions of the NESSUS finite element code allowed the
specification of very general random variables defined in terms of:

0 Geometry parameters
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o Material properties

o Beam section properties

o Ground spring stiffness

o Concentrated point loads

o Element edge and surface tractions
o Nodal pressure loading

o Temperature distribution

o Centrifugal and gravity loading

o Anisotropy orientation

NESSUS 3.0 added the following twelve new random variable types:
o Concentrated masses

o] Rayleigh damping coefficients

o Viscous damping ratio

° Friction damping ratio

o Harmonic excitation frequencies

o Amplitude and phase of harmonic nodal loads

o Amplitude and phase of harmonic base accelerations

o] Amplitude and phase of harmonic nodal pressure

o Profile of the power spectrum density

o Intensity of random nodal load excitation
o Intensity of random base acceleration excitations
o Intensity of random nodal pressure excitation

Three other random variable types have been added for the transient code:
o Initial displacements

) Initial velocities

o Initial accelerations

The format for defining random variables in terms of these quantities was
designed to follow the format for deterministic input as closely as
possible.

It should be noted that many ef these random variable types affect only
minor aspects of the overall analysis. Several conditional tests were
built into the code to detect perturbations having no effect on the outcome
of certain phases of the analysis, allowing the code to skip many
unnecessary computations. If appropriate, a "dummy” perturbation may be
added into the database. Such "dummy" perturbations are simulated by
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creating new logical links within the perturbation database, thereby
avoiding the storage of unnecessary data without disturbing the overall
structure of the existing database.

2.9 Miscellaneous Changes and Improvements

Several minor changes and improvements were made to the NESSUS finite
element code in order to enhance the versatility and usefulness of the
code. Among these, the most significant enhancements include:

(o]

(o]

A concentrated point mass option was added.

The input for closed-form beam section properties was cleaned-up and
documented. Provisions for non-structural beam section mass
properties were also introduced into the relevant code subroutines.

A new user routine for specifying arbitrary power spectrum correlation
functions was added. This subroutine allows the specification of both
real and imaginary correlation terms, accounting for phase '
information.

A similar user routine was coded into the NESSUS/PRE module, allowing
the specification of more complex correlation models directly by the
user.

The NESSUS/PRE module was extended to accommodate spatially correlated
fields of harmonic and power spectrum excitation.

A power shift option was added into the NESSUS/PRE module, allowing
for spectral decomposition of random fields in which some components
are fully correlated or have zero uncertainty.

2.10 Future Effort

The planned effort for FY’'89 will focus on the development of probabilistic
nonlinear mechanics capabilities, and will include a major code cleanup and
documentation effort. The extension of probabilistic finite element
methods to nonlinear problems will address both material and geometric
nonlinearities. In order to maintain a purely nodal record of the
deformation history, allowing for stress recovery directly at the nodes,
the mixed-iterative finite element formulation will be used for both types
of nonlinear analysis.

2.10.1 Material Nonlinearities

The nonlinear behavior of a material at a point is usually derived from

the total strain history for that point in terms of an evolution
equation involving several material parameters and state variables.

Uncertainties in nonlinear material response arise from two sources:

o Uncertainties in the strain history at a point resulting from the
random nature of the geometry, boundary conditions and loading
history.
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o Uncertainties in the material parameters resulting from material
inhomogeneity and variations in the processing of different
material batches.

For a given realization of the strain history and the material
parameters at a point, the evolution equation can be used to solve for
the evolution history of the remaining state variables.

In probabilistic finite element analysis, the uncertainties in strain
history are expressed in terms of the evolution of a random discrete
strain field which is determined by the particular finite element
formulation. Therefore, random strain histories can be handled in a way
that is not substantially different from the way random strain histories
are obtained for incremental elastostatics or transient elastodynamics
problems.

The major new ingredients involve uncertainties in the material
parameters present in the evolution equations. The development of
stochastic material models for use in probabilistic finite element
analysis will require the introduction of uncertainty into the evolution
equations, expressed {n terms of the random material parameters.
Therefore, stochastic material models will be characterized in terms of
distributions for yleld stress, hardening moduli, creep constants, and
other relevant material parameters.

The extension of the iterative perturbation strategy to situations
involving at least mild material nonlinearities appears to be
straightforward. The basic solution strategy involves tracking a set of
multiple perturbed time-histories, using the unperturbed tangent
stiffness at the beginning of the increment to precondition the
iteration. In addition, the values of the appropriate state variables
at several sampling points need to be carried forward between increments
in a consistent manner. Because the mixed-iterative formulation
involves only the nodal values of these state variables, this operation
can be performed using the existing database format.

Difficulties will arise if the perturbed solutions stray too far from
the unperturbed path in the course of the analysis. This problem may be
aggravated by the presence of the incompressibility constraints
associated with the evolution equations for deviatoric rate-independent
plasticity.

2.10.2 Geometric Nonlinearities

Geometric nonlinearities account for many of the most challenging
problems in computational mechanics. The solutions to these problems
are known to be extremely sensitive to initial imperfections in the
geometry of the original structure, which very often may only be
described in statistical terms. This behavior is often indicative of
the presence of complex multi-furcation points at which the solution can
take any one of several distinct equilibrium paths.
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The deterministic finite deformation algorithms currently implemented in
the NESSUS finite element code are based on a Lagrangian mesh
description using the "updated Lagrangian" formulation. The strategy
involves repeated updates of the mesh geometry to the current
configuration, allowing the evaluation of the appropriate finite element
integrals over the volume of the deformed body. As a result, the finite
element equations remain very similar to the ones developed for the
small deformation case, and the only additional terms are used to
account for deformation gradients and rotation tensors.

The "updated Lagrangean” formulation is particularly well suited for use
in conjunction with the iterative perturbation algorithms coded in the
NESSUS finite element code. At each perturbation, the current
configuration may be obtained by composition of the initial geometry
perturbation (if any) with the total motion computed for that
perturbation. In this manner, the residual vector is computed by
integrating the stresses over the deformed volume of the perturbed body,
accounting for both nonlinear and perturbation effects. In order to
perform this operation correctly, the total deformation gradients for
all perturbed problems must be carried forward between increments in a
consistent manner. Again, the mixed-iterative formulation requires only
the nodal values of the deformation gradients, allowing the use of the
existing database to store the full deformation history for each
perturbation.

It should be noted that, even with the best available finite element
technology, the solution of seemingly simple deterministic finite
deformation problems can become extremely complex. However, it is
anticipated that existing finite element methods will prove sufficiently
robust to allow probabilistic analysis of somewhat mild forms of
geometric nonlinearity. The analysis of complex post-buckling behavior
may remain one of the most intractable problems of probabilistic
mechanics for yet some time, but at least the task of detecting the
presence of a bifurcation represents a much simpler problem, involving
the solution of a stochastic eigenvalue problem.

2.10.3 Code Documentation

A major code documentation effort is planned at the end of FY’'89. This
will include the preparation of final versions of the User’s Manual, the
System’'s Manual and a Theoretical Manual. Some time will also need to
be devoted to cleaning-up the final version of the code and reconciling
any discrepancies remaining after the freezing of major new development
work. Release of the final version of the NESSUS finite element code
with the full documentation is expected towards the end of FY'89.
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3.0 STRUCTURAL DYNAMICS FOR STOCHASTIC STRUCTURES AND LOADS
3.1 Introduction

The structural dynamics solution capability for probabilistic analysis in
the NESSUS code is organized by various levels of stochastic variation.

The NESSUS code allows progressively increasing levels of complexity in
random variable content to provide the analyst a stair-step approach to
understanding the significance of the analysis results by comparison to
results generated using less detailed random variation. The random
variation can be described as existing in the structure itself; in its
imposed loading in a global sense; or in an integral way by specifying
certain structural elements, properties, etc., or particular loading points
that exhibit unique random variation which cannot be handled in a global

sense.,

In the NESSUS code, the dynamic response of a structure with stochastic
variation in physical properties of the structure or loading can be
synthesized in the frequency domain via modal analyses or in the time
domain via direct time integration of the system equations of motion. A
brief description of the analysis approaches will now be given along with
basic equations to illustrate the level of stochastic variation.

3.2 Frequency Domain Modeling

Three levels of frequency domain modeling exist in the NESSUS code as
indicated by the level content given in the table below. A brief
description of each of the modeling levels will now be given with an
outline of the corresponding dynamic equations of motion to explicitly
demonstrate the differences in the various modeling levels.

Table 3.1
Dynamic Analysis Modeling-Frequency Domain

LEVEL O LEVEL 1 LEVEL 2
Deterministic Global Uncertainty Full Uncertainty
Structure
Modal Analysis Scaled Eigenvectors |Perturbed Eigenvectors
Periodic Uncertain Periodic Random Periodic
Deterministic Random Uncertain Random Uncertain Random

3.2.1 Level 0 - Deterministic

In Level O analysis, the structure is considered to be deterministic as
well as the loading, except for the case of a specified power spectral
density loading function. This is the type of analysis most often
considered for random loading of structures. In the usual manner the
frequency domain solution begins with an expansion of the nodal
equations of motions in terms of the homogeneous system eigenvalues and
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eigenvectors, normally referred to as the system undamped normal modes.
For viscous like damping proportional to the system mass or stiffness
the expanded equations of motion become a set of NR uncoupled single
degree of freedom (DOF) oscillators,

G.(0+2B,w,q,(1)+w?q, (1) =1,(t). 3.
r=1,2.3...NR

where qp(t) is the modal DOF, B, the equivalent viscous damping
coefficient, w, the undamped normal mode frequency, and !, (!) the
generalized modal loading for the rth modal DOF. The structural nodal
motions, u, are related to the modal DOF via the system eigenvectors as

(u)-[¢r](qr) (32)

vhere ¢, is the rth mode eigenvector.

The generalized modal loading is determined from the applied nodal
loading, f(S.t), via,

’r(‘)'f;Q,(S)](s.l)ds (3.3)

vhere the integration is over the structural surface, S. For case of
periodic loading, where the excitation occurs at distinct frequencies
w, the generalized loading takes the form

l,(w)-f’o,(s)r(s)e"“”ds (3.4)

where F(S) is the spatial variation in the applied periodic loading and
8(S) is the relative phase variation across the structure. The explicit
periodic variation of the form e’ is implied in the above equation via
the use of upper case variables. The modal response, Q.(w) to the
periodic loading takes the form

Q (w)=H(w)L (w) (3.5)
where H(w) is the single DOF transfer function. The resulting motion
at the ith structural node is computed from the equation above as

N (3.6)
Uw)= ) [6,1Q.(w)

rel

For a deterministic random loading in the form of a stationary Gaussian
power spectral density (PSD) the one sided modal cross-spectral density
between the mth and nth modal responses, G(w)qn.q. is computed from

C(w)qnqa - ”(w)nH(w)lj:f,ﬁ(s).PSD(s.s'.w)¢(s),dsds' 3.7)
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where the asterisk denotes the complex conjugate operator. The double
surface integral is generally referred to as the cross-joint acceptance
function for the structure, J(w),,. The cross-joint acceptance function
describes how the input couples to the structure over its length or
span. The corresponding displacement cross-spectral density function,
G(w)uu, takes the form

NE NE (3.8)
C(WIul, =) ) b H(W) H(w) J (W) 0,

mela=l

where the summation is over all the retained modal responses.

Stress modal functions are defined from the element stress displacement
relationships and similar mathematical expressions result to describe
the stress auto-power spectral density for an element. Often, the cross
modal terms are neglected; if they are computed, only the real part of
the spectra has physical significance.

3.2.2 Level 1 - Global Probabilistic

A global probabilistic variation in the structure or loading is
considered in Level 1 analysis. The global variation can occur in the
following forms.

A. Stiffness Variation

(R}=[K {1 +Y (%)} =[Ko}¥ ' (3.9)
B. Mass Variation

[M]-[MO](I+Z(52)}-[M°]Z. (3.10)
C. Damping Variation

Viscous:

(C1=[Col{1+W(XR)=[C,IW. (3.11)
Structural:

G=go{l +W(x))=goW. (3.12)

These global variations or uncertainties scale the dymamic response
variable mean values. The system eigenvectors, or mode shapes, scale as

(3,y=2""{é,,} (3.13)

The system eigenvalues, or frequencies squared, scale as
X, =(P/2)x,, (3.14)
and the viscous proportional damping ratios scale as

B, =(W/(27)"* B0, (3.15)

" where {¢.)}.A..and B, and are, respectively, the rth mean eigenvector,

eigenvalue, and viscous damping ratio.

D. Periodic Load Variation
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](s)el(él-l(s))_ Rfo(s)e"o(’)’u""c' (3.16)

where R,P,andG are respectively, the global stochastic variation in the
periodic load magnitude, phase, and driving frequency and
f0(S5).8(S).andw are respectively, the mean applied load, phase, and
driving frequency.

E. PSD Variation

PSD(s.w)={1+R(%))?PSD,(s.w)=R*PSDy(s.w) (3.17)

where R is the global stochastic variation in the random loading, and
PSD,(S.w) is the measured or most probable mean loading spectra. Here
we do not distinguish between variation in PSD level, phase, or
frequency on a global basis since such detail would not be unique.

The rth generalized modal response to random periodic loading of a
structure with global stochastic variation of its mass, stiffness, and
damping properties takes the form

0.(w) = A(w.B),[(w) | (3.18)

where L[, (w) is the Fourier transform of the rth generalized force of the

mean loading and H,(w.B) is the random oscillator transfer function for
proportional viscous damping. An identical expression results for
structural damping by replacing the transfer function with H(w,g). The
general form of the transfer function for viscous damping is

A(w.g)=2/[Fwi -C*2w?+i2p,, w, wW{] (3.19)
and for structural damping it is
A(w.g)=2/[Pw} -6 2w?+igw; WT] (3.20)

The generalized load for the rth modal degree of freedom would take the
first order form

Li(0)=2"2R [ 40,(5)fo(s)exPL-ib,(s)]ds (3.21)

=2 2RP(E) [ 40,(5)7o(5)8()exPL-i06(5)]ds
+[Higher Order Terms of P(X)]

where P(%) is the zero mean random variation of the phase 8. Nodal
responses such as displacements, velocities, and accelerations would
then be expressed, respectively, as

e (3.22a)
O, (w)= Re[Z" z Zl%‘,(Q,(w))].

: NR (3.22b)
U(w)= Re{—iwcz'”z Z %.,(Or(w))]-
re1
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and

z NE 3.22
U:(w)'—'RQ[_WZGZZ_HZZl¢mr(or(w))]' ( C)

where the Re operator denotes the real part of the resultant. The
element stresses would then be computed from the stress displacement
relationships for the given element.

The major concern when introducing random excitation in the form of a
pover spectral density function (PSD) is how to introduce uncertainty in
the structure and loading. In NESSUS the approach has been to assume
that the uncertainty in the structure is independent of the uncertainty
in the loading and vice versa. With this assumption, the modal
cross-spectral density function becomes

C(W)q o, = R2ZT'A(W)p A (W), I (W) s (3.23)

where the cross-joint acceptance function, Ja..(w), does not exhibit

global random variation due to the assumed independence in the structure
and loading and as such takes the form as specified in eqn. (3.7).

The displacement cross spectral density between the ith and jth nodes
becomes

R . (3.24)
C(w),,‘u’= R22°? Z Z¢om¢°’.H(w)mH(w).J(w)m

m=la~l

and likewise the velocities and accelerations are, respectively

G(w)i‘i's—w’GZG(w)_‘_l, (3.25)
and
G(w)ila,’w‘c‘c(w).‘,, (3.26)

Stress modal functions are again defined from the element
stress-displacement relationships; similar mathematical expressions
result to describe the stress auto-power spectral density for an
element. As with the deterministic case, the cross modal terms are
often neglected; if they are computed, only the real part of the spectra
has physical significance.
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3.2.3 Level 2 - Full Uncertainty

When considering full uncertainty throughout the structure, or parts
thereof, and uncertainty in the loading with partially correlated random
variables, explicit solutions to the dynamic response of the structure
are no longer possible except in a few special cases. For the general
case NESSUS synthesizes the partially correlated variables into
uncorrelated modes [l1]. The system eigenvalues/eigenvectors are then
computed, along with structural responses for a given loading, for each
independent uncorrelated mode. The results are stored in a data bank
and efficient probabilistic methods [2] are then used to construct
dynamic response distribution functions for the response variables of
interest.

3.3 Time Domain Modeling

For transient loading analyses the deterministic and full uncertainty cases
are treated similarly. A Newmark & Beta direct time integration scheme [3]
is employed to obtain the time history response of the structure. For the
case of full uncertainty the partially correlated variables are synthesized
into uncorrelated modes and each independent structural variation and
loading case is solved independently. The analysis results are stored in a
data bank and probabilistic methods are then used to construct response
distribution functions.

3.4 Dynamic Loading Functions

The dynamic loading functions available in NESSUS are in the form of point
harmonic loads, nodal harmonic pressures, surface distributed random
loading, base excited point harmonic accelerations or acceleration power
spectral density excitation, and explicit time history nodal loadings.
Generic load models with multiple levels of progressive sophistication to
simulate the composite load spectra that are induced in space propulsion
system components representative of Space Shuttle Main Engines are being
generated by Rockwell International Corporation, Rocketdyne Division
engineers. Every effort has been made in the NESSUS code to accommodate a
wide variety of possible loading scenarios. A major task underway is the
integration of specific loading descriptions into the NESSUS loads data
base.

3.5 References

{1} Y.-T. Wu, O.H. Burnside, and T.A. Cruse, 1988, ASME Symposium on
Computational Probabilistic Methods, UC-Berkeley, California, June 20,
1988, (pending publication in Computational Mechanics of Reliability
Analysis, edited by Wing Kam Liu and Ted Belytschko, Elempress
International).

{2} Y.-T. Wu, 1987, "Demonstration of a New Fast Probability Integration
Method for Reliability Analysis, Journal of Engineering for Industry,
ASME, 109, 24-28.

[3] K. J., Bathe, 1982, Finite Element Procedure in Engineering Analysis,
Prentice-Hall, Inc.
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4.0 NESSUS PROBABILITY ALGORITHM DEVELOPMENT
4.1 Introduction
This chapter summarizes the NESSUS probability algorithms development
during the past year.
Section 4.2 reports on the performance of the advanced
mean-value-first-order (AMVFO) method. The AMVFO method, developed
originally for the NESSUS analysis, has been shown to be very effective in
solving the NESSUS validation problems [4] as well as the turbine blade
verification problem.
Section 4.3 describes the development of a methodology for estimating the
probabilistic solution for the entire structural component using limited
perturbation solutions at selected nodes.
The turbine blade verification problem has led to the extension of the
AMVFO method to a more general class of problems involving strongly
non-monotonic performance functions. Section 4.4 presents a simple solution
to modify the AMVFO solution for this new class of problems.
Section 4.5 reports on the efforts of integrating the FPI and a fast Monte
Carlo code. The integration has been completed and tested successfully.
This new simulation capability allows an independent checking of the FPI
results.
The NESSUS/FPI code has also been modified for PAAM analyses. The details
of the modification is provided in Section 4.6.
One major NESSUS analysis capability is dynamics analysis which is being
validated (see Chapter 7). Section 4.7 discusses the strategies for the
uncertainty characterizations of the dynamics loads.
Section 4.8 reports on the progress of code development for solving
problems involving non-normal dependent random variables.

4.2 Advanced Mean Value First Order Method (University of Arizona Report)
The probability distribution of a response function (e.g., stresses,
displacements) can be calculated efficiently employing the advanced mean
value first order method (AMVFO), an abbreviated form of the most probable
point locus method (MPPL). The scheme, first developed for the PSAM
program by Wu has wide application in probabilistic mechanics and design.
Following is a description of AMVFO and MPPL.

Consider a response function
Z=2Z(X) (4.1)

where X is a vector of n random design factors. Z can be either explicit

or implicit. Determine the CDF of Z, denoted as Fz, If Z is an explicit
function of X, then the construction of the Fz, is straightforward using
Monte Carlo or fast probability integration. All numerical reliability
methods require many (100 to 10,000) function evaluations, a very fast
operation with a digital computer if Z is an explicit function of X.
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However, when Z is an implicit function (e.g., Z(X) defined only through a

finite element code) a single function evaluation may be costly. So the

fundamental question is how do we construct 3 high quality CDF of Z with a
very minimum of function evaluations?

The most probable point locus method (MPPL) as proposed by Y.-T. Wu may be
close to the optimum in requiring a minimum number of function evaluations
relative to the accuracy of Fz. There is no formal proof of this, but
intuition suggests that it would be difficult to produce a reasonable
estimate of Fz with fewer function evaluations.

A detailed description of MPPL, an iterative process, is given in Appendix
A. In summary, the system follows the steps:

1. Approximate Z as a linear function of X. This requires solutions
at the mean value and at small perturbations about the mean to
evaluate the parameters of the linear function.

2. Now that an explicit function (albeit approximate) is available,
reliability methods, (e.g., [3]) can be used to approximate
probabilities in selected points in the sample space of Z. This
first approximation to Fz, CDF of Z, called the mean value first
order (MVFO) method is, in general, not likely to be accurate.

3. To improve the estimate of Fz, the function Z is evaluated at
each design point. These are “improved Z’'s at each probability
level. This "first move™ in MPPL is called AMVFO. As shown in
Appendices A and B, AMVFO provides remarkably accurate estimates
of Fz in most cases.

4. A linear approximation to Z can be obtained at each of the design
points. This requires again perturbed solutions to Z. And
again, a fast probability integration method can be employed for
point probability estimates in the "second move" to construct Fz.
An improved Fz is obtained at each Z.

5. For the "third move," the function is evaluated at the design
points computed in step 4.

While steps 4 and 5 can be repeated to improve the estimate of Z, it has
been found that AMVFO consistently proves an accurate estimate of Fz as
demonstrated in Appendix B.

The critical issue is that the number of costly function evaluations must
be limited for an efficient solution to Fz. Figure 4.1 dramatically
illustrates the power of AMVFO in this regard. In summary, AMVFO generally
is expected to provide a high quality Fz with a minimum of function
evaluations.

The detailed summary of MPPL of Appendix A provides examples which
illustrate the MPPL process. And presented in Appendix B is a summary of
the experiences with AMVFO by the team at the University of Arizonma.
Attempts were made to find problems for which AMVFO would perform poorly.
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The general conclusion from the study was that AMVFO seems to be robust.
The largest errors in B=¢ '(F,;) were about 10% (¢ is the standard normal
CDF).

4.3 The Field Problem

The most probable point locus (MPPL) method has been shown to be a very
efficient and effective way of establishing the CDF of an explicit (or
implicit) function. Wu has proposed an extension of MPPL to construct the
marginal CDF's of a vector of correlated response variables, Z = Z(X) where
Z is a vector of response functions.

Consider two response functions Z} = Z2 which are correlated.

Z,=Z,(X) (6.2)
Z,=Z,(X) (4.3)
where X is a vector of random design factors.

Here, 2] is known to be the "most important" variable and is called the
master. Coordinate Zy is the slave. Note that Zj and Z) are correlated.
The CDF's of both Z] and Zy can be established by direct application of
MPPL. But there is promise that the CDF of Z2 could be constructed more
efficiently by (a) employing MPPL to obtain the CDF of Zj, and (b)
estimating the CDF of Z at each point knowing the correlation coefficient
between Z] and Z3 based on linear approximations to Zj and Z3. 1In the
special case, where the response functions are linear and the random
variables are normal, this process produces the exact CDF of Z3 6 For the
general case where the response functions are nonlinear and/or the random
variables are non-normal, it is hoped that the approximation to the CDF of
the slave variable is "accurate.” This scheme will be referred to herein
as "Wu's approximation."” A detailed description of the operation of the
field problem is provided in Appendix C.

An example presented here is a case where the quality of the slave
variable, Z7, is poor for a low correlation coefficient between Z] and Z3.
However, it will be demonstrated that as the correlation coefficient gets
closer to 1 (by adjusting the parameters of Zj] and Z2) the quality of the
approximation to the CDF of Z7 improves.

Consider a specific example:

Z,=a, X+a,Y+a,Z (4.4)
Zy=a, X+aY+a,Z 4.5)
The random variables have the following distributions:

X -~ WEIBULL (10, 1.0)*
Y ~ FRECHET (10, 1.0)
U - EXTREME VALUE (10, 1.0)

*mean and standard deviation

Consider the case where,
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(a11, a1z, a13) = (2., 1., 2.) (4.6)

(ag1, az2, az23) = (1., -1., 1.) .7

Employing the most probable point locus method, and the scheme as proposed
by Wu, the CDF's of Zj (master) and Z3 (slave) were constructed. They are
plotted in Figure 4.2. The poor agreement between the exact CDF and the Wu
approximation for the slave comes as no surprise because of the relatively
low correlation coefficient, p = 0.58. However, the quality of the slave
improves as p approaches 1. This example provides an illustration of how
the Wu approximation approaches the exact for increased values of the
correlation coefficient.

Five cases are considered that are summarized in Table 4.1. The
corresponding CDF's are plotted in Figures 4.2 through 4.6. Clearly, the
quality of the Wu approximation to the CDF of the slave improves as p
approaches 1. However, there is still significant error for "high"
correlation coefficients. As a subjective comment, it is noted by this
author that the errors in the Wu approximation for other cases studied were
smaller. 1In fact, this example was chosen because of the relatively poor
quality of the slave CDF.

In general, the algorithm presented will provide a reasonable first
approximation of the CDF of the slave variables. However, in some cases
the errors may be significant. Additional research on this topic seems
appropriate.

Table 4.1

Summary of Examples

Parameters Corr. Coeff.
Case | (a11, a12, 213) (a21,a22, a23) (p)
1 2., 1., 2. 1., -1., 1. 0.58
2 2., 1., 2. 1., -0.58, 1. 0.75
3 2., 0.6, 2. 1., -0.5, 1. 0.853
4 2., -1., 2. 1., -1., 1. 0.962
5 2., -1.3, 1. 1., -1., 1. 0.983

4.4 The AMVFO Method for Non-Monotonic Response Functions

The turbine blade verification study has led to the extemsion of the
advanced mean-value-first-order (AMVFO) method for non-monotonic response
functions. Previously, it was assumed that only one most probable point
(MPP) exists in the probability region of interest.
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In the turbine blade analysis, the modulus of elasticity is a function of
material orientation. The first bending frequency is, in theory, a
non-monotonic function. Based on the previous AMVFO solution procedure,
the resulting CDF would be non-monotonic which violates the definition of
CDF.

In general, the AMVFO solution requires modification if more than one MPP
exist. To solve the problem, all the significant MPPs should be identified
first and then the probability solution should be modified by assuming
multiple performance functions. The system reliability analysis methods
[6], particularly the reliability bounds theory, can be applied to estimate
the probability.

An efficient, approximate solution has been proposed [7] by assuming that Z
is a non-monotonic function on the MPPL of Zj, the mean-based linear
approximation. Under this assumption, the CDF produced by the earlier
AMVFO procedure would be a non-monotonic function. The corrected CDF can
be obtained by assuming multiple, fully-correlated Z-functions. For
example, for the two-MPP cases, the modified CDF can be derived by
subtracting or superimposing two probabilities associated with the two
CDF's. The solution procedures for concave and convex Z functions are
illustrated, respectively, in Figures 4.7 and 4.8. Note that the modified
CDF's are truncated at the left or right tails. This reflects the facts
that the Z functions are non-monotonic, having lower or upper bounds.
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Based on the new procedure, it appears that the previous turbine blade
analysis result remains valid. However, the modified AMVFO procedure
suggests that the first-mode turbine blade frequency is virtually
truncated, i.e., the frequency distribution has a lower bound. In addition,
the new procedure suggests that a modification to the AMVFO solution will
be needed if the uncertainties of the material orientation angles get
higher such that the non-monotonic effect becomes more significant.

The new procedure also indicates that, in performing iterations following
the AMVFO solution, it is important to keep track of both most probable
points to avoid oscillation between two solution points.

4.5 The Integrated NESSUS/FPI/Monte Carlo Program

The Monte Carlo program HARBITZ (using Harbitz’s method, [8]) developed at
the University of Arizona [2] has been modified and included in the
NESSUS/FPI1 program.

Two Monte Carlo options are now available in the NESSUS/FPI code (Version
3.1):

Option 1: The Monte Carlo routine utilizes the minimum distance (produced
from FPI) to define a reduced sample space. The user can also input a
reduction factor to decrease the minimum distance.

Option 2: The Monte Carlo routine bypasses the FPI routine and assumes that
the minimum distance is zero. This option provides an independent solution.
The procedure is, however, different from the standard Monte Carlo
procedure in that the Harbitz’s sampling procedure starts from a
standardized Gaussian sampling space.
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In the NESSUS analysis, the FPI algorithm is being applied at two levels.
At the first level, the NESSUS/FPI code generates probabilistic output
using the response function established based on the NESSUS database. At
this level, NESSUS/FPI is accurate relative to the accuracy of the response
function. At the second level, which is more critical to the NESSUS
accuracy, the FPI algorithm directs the FEM module to "move" to another
perturbation center (the most probable point generated from NESSUS/FPIL).
The first level is generally efficient because the response function is
explicitly defined. At the second level, however, finite element solutions
are required to define the response function (i.e., the response function
is implicitly defined), and the computation time becomes dominant.

The NESSUS fast Monte Carlo procedure is designed to be an alternative to
the NESSUS/FPI only at the first level. The major reason is that, even
with the "fast" Monte Carlo method, it appears generally impractical to
generate a "sufficient” number of NESSUS simulation solutions.

4.6 Modification to FPI

In additional to the new Monte Carlo routine, the NESSUS/FPI module was
modified for the PAAM analysis. The modified FPI module includes a
user-defined function routine (RESPON) in which the response/performance
function is defined as:

Z(X)= function(X . X...... X,) (4.8)

A routine was added to compute the response sensitivities (i.e., first- and
second-order derivatives) numerically. Finally the Rackwitz-Fiessler
iteration algorithm [6,9] is used to search for the most probable point.
This new capability allows a more convenient definition of the
response/performance function. Previously, the function must be defined in
the following form:

X, = function(X,. X5..... X,) (4.9)

to allow for the use of an unconstrained optimization routine to search for
the most probable point.

The new capability has been tested successfully using several examples
including a PAAM example involving a Lox Post response function.

4.7 Strategies for Uncertainty Characterization of Dynamic Loads

Three basic types of dynamic loads have been considered in the context of
NESSUS analysis. These are: periodic, random and transient (shock). For
each type of loads, random variables need to be defined to characterize the
uncertainty in the load.

For static loading, it is straightforward to treat the amplitudes of the
loads as random variables. When the loading is dynamic, the uncertainty of
the loading becomes more difficult to model. In general, a dynamic loading
can be treated as a stochastic process X(t). A stochastic process is a
history containing an uncountable infinity of random variables, one for
each t. The statistical properties of X(t) are completely determined in
terms of its nth-order distribution
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F(xX oo x il et )=P{X())Sx 0, X(t)<x,) (4.10)

From the practical viewpoint, only certain averages are used. As an
example, the statistics of a normal process are completely determined in
terms of its mean and standard deviation.

For periodic loading, NESSUS treats the amplitude and phase as random
variables. For stationary random loading, NESSUS treats the mean and the
PSD as random variables. The PSD function is defined at several frequency
points. At each point, the PSD can be described as a random variable. A
special case is one in which the random variables are fully correlated so
that only one random variable, i.e., a random scale factor of the PSD
function, is needed. For multiple points random excitation, the
correlations between each PSD function must be known.

For transient loading, it is possible to define a random variable for each
time step if the loading can be described by using a reasonably small
number of time steps. This model is more applicable when the loading
function is relatively smooth and predictable over a period of time (i.e.,
the opposite of a white noise process in which the correlation is zero
between loads at any two instances). In general, this model becomes
impractical if the required number of time steps (thus the required number
of random variables) is large. Therefore, simple stochastic process models
which require only a few statistics would be more practical. If such
models can be used to approximate the actual processes, then the
uncertainty can be more easily characterized by treating the model
statistics as random variables.

A sample of the NESSUS dynamics validation problems is given in Chapter 7.
In this example, a cantilever beam is subjected to random base excitation.
The random variables include the material properties, the geometries and
the acceleration spectral density (ASD). The ASD is modeled as a truncated
white noise with uncertain intensity and the cutoff frequency is also
modelled as a random variable.

4.8 Non-normal Random Variables

The strategies for problems involving dependent non-normal random variables
have been documented in [2,7]. Two computer subroutines have been written
to facilitate the required random variables transformations. A strategy
was defined to integrate these subroutines with the NESSUS modules to
automate the solution process.
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5.0 NESSUS/EXPERT
5.1 Summary.

NESSUS/EXPERT has been designed as an expert system to assist in the use of
the probabilistic finite element code NESSUS/FEM and the fast probability
integrator (FPI). These codes contain a significant amount of new
technology and features and require data unique to probabilistic analysis
of structures. As a result, NESSUS/EXPERT performs a broad variety of
operations to insure a successful PSAM analysis.

NESSUS/EXPERT has been designed to be an interactive user friendly expert
system. The backbone of the system is an intelligent menu selection
procedure to guide the user in appropriate input choices. Help screens
explain input formats and provide detailed explanations of NESSUS keywords
and act as an on-line user’s manual. Error checking is provided at various
levels to insure functional input data to the NESSUS and FPI programs.
NESSUS/EXPERT also provides advice and default values of probabilistic
input to assist the user in selecting data for which the user is unfamiliar
or a knowledge base is not established.

5.1.1 Menu Structure

NESSUS/EXPERT is intended as an aid to probabilistic design. Therefore,
all input is driven by a user-friendly interactive menu system. The
menus are divided into functional modules for easy input. An overview
of the NESSUS/EXPERT menu system is shown in Figure 5.1.

An intelligent menu selection procedure guides the user through data
input. NESSUS/EXPERT will disable certain menu selections based on
existing model data in order to prevent an input error. For example, if
the model is composed of plate elements, the beam section input module
will not be active thus preventing the user from inputting incorrect
information.

5.1.2 Help Screens

Help screens are provided for NESSUS keywords. Help screens provide
detailed information on a keyword. These help screens cover the usual
finite element keywords and NESSUS specific keywords. Thus, the user
can obtain information on usual finite element inputs such as plasticity
theories as well as NESSUS specific keywords such as convergence
criteria.

Help screens serve in one sense as an on-line users manual. The proper
format of input and the definition of the input variables can be
obtained on-line. For example, the help screen describing the element
connectivity, shown in Figure 5.2, describes the input variables and

proper input format.

In a more detailed sense, the user can get detailed explanations of a
keyword and its consequences. As an example, the user may have a finite
element model of a rotating structure and wants to know if the
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Figure 5.1 NESSUS/EXPERT Menu System
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*** CENTRIFUGAL MASS HELP SCREEN °**

Centrifugal mass effects account for the changes in centrifugal
inertia that result from deforming the structure(i.e. follower effects for

centrifugal loading). Centrifugal mass etfects are important in the
analysis of high-speed rotation machinery.

When this option is selected, centrifugal mass stifiness effects due to
angular velocity are included at the increment number specified.

Centrifugal mass has one parameter. Increment number at which
centrifugal mass stiffness effects are to be included.

The angular velocity is defined with the DISTRIBUTED LOAD data
input.

The axis about which the angular velocity occurs is defined with the
BODY FORCE data input.

Figure 5.2 Help Screen for Element Connectivity
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centrifugal mass option is appropriate and the expected consequences.
The help screen, Figure 5.2, describes the centrifugal mass option and
confirms the input format.

5.1.3 Error_Checking

Finite element methodology by itself is a complicated task and often
requires a large amount of data for realistic engineering problems. A
large amount of engineering time is often spent debugging input data of
a finite element model. In addition, the NESSUS/FEM probabilistic
finite element program contains new technology developed explicitly for
probabilistic finite element analysis. Thus, not only are the data
requirements expanded, but even knowledgeable deterministic finite
element users will not be well versed in many of the options in
NESSUS/FEM. Therefore, one of the requirements of NESSUS/EXPERT is to
analyze the input data for errors and allow corrections in the
interactive mode. Wasted engineering time and computer time while
iteratively debugging the input data is eliminated.

NESSUS/EXPERT performs error checking on several levels to insure a
correct input deck. For example, if material properties are being input
for an elastic isotropic material, the user must enter: beginning node,
ending node, elastic modulus, and Poisson’s ratio.

As an initial check, NESSUS/EXPERT makes sure the correct number of
entries have been made; in this case four entries. On the next level,
the value of the material properties is checked for physical sense. For
example, the elastic modulus must be positive and Poisson’s ratio is
bounded by the limits -1 and +1/2.

If an error is detected at this level a descriptive error message is
printed and the user is reprompted. Error checking at this point is
within a single keyword - namely material properties. NESSUS/EXPERT
also provides error checking between keywords. For example, if forces
are input for nodes that do not exist, NESSUS/EXPERT will compare the
nodal data in the loading module with the nodal data in the coordinates
module. Error checking across keywords is performed only when leaving a
keyword because sometimes a large amount of data must be checked. If an
error is detected the undefined node numbers are identified and the
user has the option of ignoring the error message, reentering the data,
or defining the new nodes. A NESSUS/EXPERT error screen is shown in
Figure 5.3.

A final level of error checking and warning messages is performed when
the user attempts to build the NESSUS/FEM input deck from the
NESSUS/EXPERT input. All high level checking between keywords is
performed and appropriate messages issued.

5.1.4 Language Implementation

Previous reports have discussed the evolution of the NESSUS/EXPERT
implementation language into a combination of FORTRAN and CLIPS, a C
language expert system tool. This combination is utilized to exploit
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«++ CONSISTENCY CHECK FOR TURBINE BLADE ***
Forces are defined for the following undefined nodes.

107 108

TYPE C to enter coordinate data for the node(s) OR
F to change the force definition(s)
1 to ignore the inconsistency for now.

Figure 5.3 Error Screen for Forces on Undefined Nodes
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the strengths of each language. The present work has continued with the
Clips - Fortran hybrid implementation. This language implementation has
allowed high-level decision making on one hand and low level data
checking and interfacing with engineering codes on the other.

5.1.5 Probabilistic Input

In many real life engineering problems, probabilistic knowledge of the
random input variables is not known. The mean, standard deviation and
the probability density function PDF is required input for the FPI
program. The probabilistic response of a structure may be sensitive to
the PDF chosen. The probability data for a random variable may not
always be known; however, a distinction can be made between appropriate
and inappropriate choices.

A large amount of statistical data has been accumulated for various
random variables. NESSUS/EXPERT can offer the best known default
distributions and coefficient of variations for a random variable.

Table 5.1 shows a list of the default distributions and COV’s that have
been gathered from engineering data and experience. Thus, if
statistical information is not known about a particular random variable,
NESSUS/EXPERT will provide a realistic choice.

Help screens and warning messages provide the user with additional
information. For example, if the user selects a Weibull distribution
for a loading random variable, a warning message "the Weibull
distribution is not generally recommended for loading random variables"
will appear. This list of recommended statistical data can be modified
for any random variable. For example, if good data on pressure
distributions on a turbine blade become available, the data can be
incorporated into the list of recommended values. Thus, expert can
serve as a user-defined repository of statistical data. This can aid
new users who are unsure of appropriate input data.

In addition, the menu structure for selecting probabilistic input has
been defined and a preliminary version input in EXPERT.

The majority of the work has concentrating on implementing the
NESSUS/FEM model data into the menu system. As a result, a fairly
robust menu system 1s currently available for building the FEM models.
The majority of the keywords through NESSUS release 2.5 are implemented.
The NESSUS/EXPERT capabilities have been tested by running several
example problems with EXPERT. A diagnostics list has been developed for
the expert system. The diagnostics have been split into high and low
priority items. The high priority items must be completed before
releasing the code. Although, many minor bugs were found the system is
a fairly complete implementation of the NESSUS keywords.

5.1.6 Limitations

One inconvenience of EXPERT is the length of time to load rules at the
beginning of an expert session. EXPERT consists of approximately 600
rules which must be loaded in at startup. This takes roughly 7 minutes
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Table 5.1

Default Distributions and COV's for
NESSUS Random Variables

VARIABLE DISTRIBUTION
Young's Modulus Normal
Poisson's Ratio Normal
Shear Modulus Normal
Density Normal
Thermal coefficient Normal
Yield stress Wiebull
Geometry Normal
Thickness Normal
Temperature Lognormal
Pressures Lognormal
Forces Lognormal
S-sect area Normal
Inertia Lognormal
Torsional constant Lognormal
Springs Lognormal
Material Orientation Normal
Other Lognormal
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.02
.02
.02
.02
.05
.07
.005
.005
.05
.ol
.02
.007
.02
.01
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on a VAX. This is an irritating length of time if EXPERT must be
entered more than once. A Clips version containing compiles rules was
found to be limited to only 180 rules. Apparently, NESSUS/EXPERT is one
of the largest implementations in Clips.

5.1.7 Future Effort

NESSUS/EXPERT needs to be exercised on a variety of realistic
engineering problems to thoroughly test and debug the code. While the
menu structure is fairly complete it must be updated to reflect recent
changes in the NESSUS/FEM code such as harmonic excitation and random
vibration capabilities. The menu structure for probabilistic input has
been defined but has not been implemented. Also, other heuristics such
as selecting perturbation sizes and convergence criteria must be
determined and implemented.

5.2 PFEM

PFEM is a utility which automatically links the NESSUS finite element
program and the FPI fast probability integrator. The advantages are

o user intervention is reduced.
o batch analyses are now possible.

PFEM will coordinate the analysis and data exchange between FEM and FPI
depending on the options chosen.

5.2.1 Capabilities
1) perform MVFO analysis on a range of nodes.

2) perform AMVFO on a single node. The AMVFO option will compute moves
based on MVFO results insert moves into NESSUS/FEM input file and
run NESSUS/FEM for each probability level.

5.2.2 Status

Previously, PFEM coordinated execution between the separate executables
NESSUS/FEM and FPI with a certain amount of system dependent code.
Because of the recent integration of the FPI code into the NESSUS/FEM
framework much of the PFEM code must be rewritten. The data exchange
and file handling mechanisms must be changed. Although the final
integrated package will be a much nicer program and be system dependent,
the integration has slowed development of the PFEM module.
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6.0 NESSUS BOUNDARY ELEMENT CODE DEVELOPMENT
6.1 Introduction

Analytical methods have been developed for reducing certain types of body
forces to equivalent boundary integrals. The first publication concerned
three dimensional body forces due to steady state thermal loading and due
to centrifugal acceleration [1]. This approach was then extended to the
axisymmetric problem [2]. Subsequently, [3] summarized this approach.

The limitation in the analytical approach is that many body force-1like
problems can not be treated in the exact manner employed for the above
studies. Examples of these important problems include non-steady thermal
loading, vibration, temperature dependent properties, plasticity, etc. For
such problems, the body forces have been modeled using domain elements,
thereby voiding much of the BIE advantage of reducing problem
dimensionality.

Relatively recently, a new and very powerful approach was identified by [4]
which offers an alternative to the direct use of domain elements for these
classes of problems. The method, which they have called the dual
reciprocity method, uses global interpolation functions to replace standard
domain interpolations, a la finite elements. The dual reciprocity
formalism results in boundary integral equations that are approximately
equivalent to the domain integrals of the standard BIE formulation. They
have extended the method to transient dynamic problems {5].

Following this work of Nardini and Brebbia, Banerjee and co-workers [6,7]
have used the same approach, but in a different formalism. The formalism
draws very directly on the notion of particular integrals to the governing
equations. The formalism of particular integrals results in a clearer
understanding of the common features for a full range of body force
problems. The particular integral approach will therefore be adopted
herein.

6.2 Probabilistic Boundary Element Analysis

The Probabilistic Boundary Element Program (PBEM) is an adaptation of the
boundary element code BEST3D to perform probabilistic analysis of
structures. The purpose of PBEM is analogous to NESSUS/FEM, that is to
obtain structural sensitivity data. The actual probabilistic analysis is
done with FPI using the sensitivity data. The database connecting PBEM and
FPI is identical to that of NESSUS/FEM. Thus, the existing codes PREFPI
and FPI can be used without modification.

Initial programming efforts have focused on implementing the necessary
input formats, storage algorithms and perturbation algorithms for a variety
of random variables. In addition, an effort has been made to give the code
the same look and feel as the NESSUS/FEM code wherever possible.

Currently, the method of obtaining the structural response to a perturbed
problem is through resolution although more efficient methods will be
examined for future implementation.
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A summary of the salient code features are:
o resolution technique used for perturbation random variables
o perturbation input format similar to NESSUS/FEM
o probabilistic BEM input format similar to deterministic BEM input
o identical database format as NESSUS/FEM

o coding for storing and retrieving the probabilistic data
similar to deterministic coding

Much attention has been paid to the look and feel of the PBEM code.
Wherever possible, input formats similar to NESSUS/FEM formats have been
used, such as the method of defining random variables and perturbations.
In addition, the method of defining the boundary element probabilistic data
is similar to the deterministic input format. The coding for storing and
retrieving the probabilistic data is very similar to the coding for
deterministic data. Typically deterministic routines were copied, renamed
and used for probabilistic data. The PBEM code dumps all data to a
database identical to the NESSUS/FEM database. Thus, the PREFPI program
can be used to retrieve data and format input files for FPI analysis. An
example problem of the probabilistic analysis to a beam under axial load
using PBEM is contained in Appendix G.

The current status of the PBEM code is:

RANDOM VARITAB COMMENTS
MATERIALS No temperature dependency

Elastic Modulus Multiple GMR's OK
Poisson’s ratio
Thermal
Coefficient
Density

GEOMETRY Multiple GMR's OK
Coordinates
Only 1 BC set
BOUNDARY CONDITIONS
Displacement
Traction
OK
BODY FORCES
Centrifugal

RESULTS DUMPED TO IDENTICAL DATABASE AS FEM
o Resolution technique used for all perturbations.
o Any combination of presently allowed random variables OK.

o No time dependency.
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o Convenient random variable input.
o Perturbation definition similar to FEM definitioms.

6.3 Domain Integral Formulation
6.3.1 Betti'’s Theorem

The reciprocal work theorem is written first in terms of the stress
(0.%) and strain tensors €.E for two solution states. The first state,
denoted by lower case Greek symbols, refers to the physical state for
which we desire the solution; the second state, denoted by upper case
Greek symbols refers to the fundamental solution [8] for the linear
elastic problem. Letting superscripts (T, E, P, 8) refer to total,
elastic, plastic, and thermal strains, we obtain the reciprocal strain
energy theorem in the form

(6.1)

f o-EdV = ef-3dv
<> = <g>

In (6.1), <R> denotes the volumetric principal value integral. That
is, the volume integral extends over the entire region of interest, but
excludes the small sphere surrounding the point load singularity from
the fundamental solution.

The Reciprocal Work Theorem of (6.1) is easily proved for linear elastic -
materials in terms of Hooke's law :
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The elastic strain can now be written in terms of the total, and other,
strains as

f o-Edv-f (e"-€"-€*)-Tav (6.3)
<> = <t> = - - -

The total strain in (6.3) may be written in terms of the displacement
gradient operator B as

T
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(6.4)
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where u.U refer to the displacements for the physical solution and the
fundamental solution, respectively. Then the reciprocal work theorem
" can be written as

f o-(B-U)dV-f (B~u)zdv—f (e’ +€%)-TdV (6.3)
<®>" - = <> — - = <> = - -
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6.3.2 Somigliana Identity

The reciprocal work theorem in (6.5) contains two integrals which can be
converted through the application of the divergence theorem to boundary
integrals. The divergence theorem poses the requirement that the strain
be continuous, and can be show to result in the following form of (6.5)
f 1-Uds+f pb-UdV = u-TdS- (e"+€®)-sdVv (6.6)
s - <> - - > 7 - -

+S.” S5+5, 7 <R

The body force per unit mass, b, appears in (6.6) because of equilibrium

requirements, and the application of the divergence theorem
V-g+pb=0 (6.7)

The terms in (6.6) which are written at the boundary of the region,
denoted S+ S, include the surface to the physical problem as well as
the surface to the small excluded sphere of radius €. The domain
integrals in (6.6) are required for equilibrium to be exactly satisfied
in the presence of non-elastic strains and body forces.

It can be shown that the left-hand-side integral over S, in (6.6) is
zero in the limit as €+ 0. The corresponding RHS integral in (6.6) can
be shown to be u(p)-6 where & is the Kroenecker delta. The free term
that results is associated with the point load of the fundamental
solution, which is taken to be located at an internal solution point
p(x). Re-writing eqn. (6.6) results in the well-known Somigliana
identity for the displacement at p(x)

U'ﬁ-fl-UdS— u-TdS#f (€’+€°).):dy+f (6.8)
- T 3 s <> - -

- - <

pb-UdV
&> -

Equation (6.7) is a re-statement of equilibrium in that differentiation
of the Somigliana identity results in exactly satisfying the equilibrium
requirements, now in the presence of a body force, and inelastic
strains.

6.3.3 Boundary Integral Equation (BIE)

The BIE is obtained from Somigliana's identity by allowing the interior
solution point to approach the boundary, viz. p(x)- P(x). Again from
[9], it is possible to determine that the point load term in (6.7) is
replaced by its boundary equivalent, denoted C, such that
) (6.9)
uce [u-Tas=[ruase [ (eree-zav [ pv-vav
Equation (6.9) is the BIE for the formulation with body force and
inelastic strains. Clearly, the BIE is not strictly a boundary-integral
equation due to the presence of the domain integrals. The remainder of
this note deals with the issue of modifying the domain integrals into
equivalent boundary integrals.
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6.4 Reduction of Domain Integrals to Boundary Integrals
6.4.1 Outline of Procedure

The procedure for the domain integrals involving thermal and body force
loads is essentially the same. First, the domain variable is written in
terms of the Navier operator relationship for that domain variable. The
domain variable is then approximated by a global interpolation, which
allows the domain variable to be approximated by the superposition of
relatively simple domain variables. Finally, knowing the particular
solution of the problem, we can write a boundary integral equation for
the particular solution of the problem. The difference between the
original integral and the particular integral equation give us an
equivalent boundary integral without the domain terms.

The replacement of the domain variable by simple global interpolation
operators allows us to integrate the Navier operator for that problem.
The quality of the equivalent boundary integral is then based on the
quality of the assumed interpolation formulae for the thermal strain and
the body force loading term. In particular cases it is possible to
obtain exactly equivalent boundary integrals, as cited in Section 6.1.
The exact cases correspond to steady state thermal loading and
centrifugal acceleration body force loading.

The problem with the procedure is the ability of the global
interpolation functions to accurately match the physical variable. This
issue will be discussed in detail with examples in a later section.
However, the accuracy of the equivalent boundary integral is solely
dependent on the accuracy of the global interpolation. Unfortunately,
insufficient attention has been paid to this vital issue in the
literature; also, there seems to be little research into the development
of improved global interpolation schemes. This is in spite of the great
value of being able to replace the domain integrals by equivalent
boundary integrals.

6.4.2 Thermal Strain

We now seek to find a particular solution, u® to the Navier equations of

elastic equilibrium in the presence of thermal loading. Stress
equilibrium is given by eqn. (6.7), the stress-strain relation by (6.2),
and the strain-displacement relation by (6.4), such that

v e 2 e 1+v _ (6.10)
l-2vv(v u)+viu a(l_ZV)ve 0
Let eqn. (6.10) be written symbolically as
(6.11)

N-u®-Bpve=-o0
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where B=a-(l+v)/(1-2v). The particular solution to (6.11l) implies
additional boundary displacements, u°(Q), and boundary tractions, t°(Q)
which must be considered along with the physical boundary conditions.

In general, we must consider an approximate solution to eqn. (6.11).

The usual manner is to model the domain integral using "finite elements”
and an assumed nodal interpolation of the temperatures.

For the current approach, the temperatures will be represented by
interpolation functions that are tied to the surface, and not to
internal nodes. 1In either case, the temperature field is approximate;
the nature of this approximation and its effect on the solution accuracy
will be discussed in Section 6.5.

We can now express a boundary integral equation similar to eqn. (6.9)
for the particular solution as

(6.12)

u'-C+fu°-Tds-fz'-Ud5+f et -Tdv
- = 5 s- - <r> -

where €°=abb. The tildes denote that the actual quantity has been

replaced by an approximation.

By subtracting eqn. (6.12) from eqn. (6.9), we obtain an equivalent
boundary integral equation of the form
&-c+fa-Tds- f-uds+E* (6.13a)
227 ) L =

- = 5
Where u=u-u', i=t-t* and E°is the error term given by

E"f (-2 sav (6.13b)
<> = - -

To complete the procedure, we now require a particular solution to the
governing differential eqn. (6.11).

The Helmholtz decomposition theorem for an arbitrary vector says that
the vector may be written as the sum of scalar and vector potentials as
u’=TyrUxy (6.14)

For the case of the particular solution to (6.11) we may take ¢=0

without loss of generality. In this case the Navier equations of
equilibrium become

(I‘_V)vz‘,_ae (6.15)

1+v
within an arbitrary constant of integration.

The critical question raised in the use of such particular solutions is
not their effect on the BIE formulation, but rather how one is to
represent such particular solutions. The standard methodology that is
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employed in such particular solution formulations is to replace the
known field (in this case, temperatures) by a simple, global
interpolation field, for example

N 6.16
6(q)= ) K(q.Q)®(Q,) ¢ )
j=1

where 6(g) is the temperature interpolation g(x), ®(Q) is a set of
unknown coefficients, and XK(q.Q) is a global interpolation function.
The usual method is to take the global interpolation function to be a
simple function

K(q.Q)=R,[1-r(q.Q)/k,] (6.17

)
where r(q,Q) is the distance between the interpolated point q and the
boundary point Q, and R, is a scale constant such as the maximum size of
the region. The quality of this interpolation function for generalized
thermal loads is discussed in Section 6.5.

When the simple form of the interpolation field (6.16) is used to
approximate the temperatures in the Navier eqn. (6.15), the form for the
potential function y(g) can be found

) " (6.18)
vir=( 123 Ja ) x(a.009(@)

where the integrated global interpolation function is given by

- _r(g.Q\r(q.Q)* (6.19)
X(a. @ R“(z R, ) 12

The corresponding displacement field for (6.19) is given from (6.12) as

. (1+v) & r(q.0)\x-% (6.20)
‘—"(1-\/)";’?"(4'3 R, )_1"2'

where x-§ is the Cartesian distance from Q(§) to q(x). Equation (6.20)

is then the solution to eqn. (6.11), for the assumed global
interpolation of temperatures. Stresses and surface tractions may then
be derived from the displacement terms in eqn. (6.20).

The derived particular traction and displacement solutions to the
approximation for eqn. (6.11) are to be substituted into eqn. (6.13a).
Assuming that the error is zero, eqn. (6.13a) results in two coupled
sets of boundary integral equations, one known and one unknown.
Following discretization, the set of BIE matrix equations is solved in
the normal fashion.

Other terms may need to be included in the global interpolation field
including a linear field. Modeling very early transients will likely
require the use of a one dimensional temperature field of the form e,
where £ is the inward normal distance from the free surface and A is the
appropriate inverse-distance variable in terms of the heat conduction

properties of the medium. Such additional terms are expected to improve
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the nature of the global interpolation process, thereby improving the
accuracy of the equivalent boundary integral for the transient thermal
loads.

6.4.3 Body Force Load

The body force that will be considered in the current formulation is for
modal vibration of the body. Gravitational and rotational inertia body
forces can be treated exactly by boundary integrals, as shown by [1].

The Navier equation of equilibrium for the body force load can be
expressed as

N-u®+pb=0 (6.21)
As before, we can express the equivalent boundary integral equation for
this case as
&-C+f&-rds-fi-Ud3+E" (6.22)
=T )es - E

Where u=u-u?, {i=t-1% and the error terms is given as

E‘-f p(b-b6) - UdVv (6.23)
= P22 e

The challenge, of course, is to find a suitable particular solution to
the operating differential eqn. (6.21) for a given body force problem.
In general, we can say that no generalized solution exists except for
simple problems such as rotational inertia loading.

The problem of interest in the current note is that for normal mode
vibration, where

pb=p0*u (6.24)
for which the particular solution from (6.21) is sought
N-u*+pQ%u=0 (6.25)

If we now replace the actual displacement field, u, by an approximate

interpolation over the domain, as given by
N (6.26)
2= K(q.Q)%Q,)
I-

then a particular solution for g‘ can be found from (6.25) as

N (6.27)
u?=p0%) 6(q.Q,)-$4(Q,)

1
The form of the particular solution G can be found by inspection to be
given by the polynomial

C=C(br(q.Q)*+y®y)+C,8r(q.Q)"+C5r(q.Q)y®y (6.28a)

For the interpolation function given by eqn. (6.17),
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, (1-2V)R,

Ci==p O 6w
(11-12v)
C,=pQ?i—— <%
2P T - v (6.28b)
]
= - 2__
Ca= =P e T -von

The ability of this interpolation to represent modal vibration
displacement fields is discussed in Section 6.5.

Again, now that the particular displacement solution is known, the
particular tractions can be obtained, and both terms substituted into
eqn. (6.22). Treating the error as having zero contribution, the
boundary integral equation is factored into the standard terms and those
with the particular solution.

6.4.4 Temperature Dependent Material Properties

For most applications in the design of thermally loaded structures, such
as for gas turbine engine structures, the material properties are
temperature dependent. Temperature dependence introduces
inhomogeneities in terms of the boundary integral equation formulation
that also appear as domain integrals.

Consider Hooke’s law for the elastic material with temperature dependent
shear modulus and Poission’s ratio u(©) and v(8)

- 2uv (6.29)

¢ 1-2v

be+2ne

where e = tr €. If we assume that the two material properties p(©) and

v(8) can be written in terms of an average or nominal constant plus the
thermal deviation from this constant then

2 (6.30)

The resulting form for Hooke’s law can then be simplified as

2" 12v,

9=CorevC'(0)-¢ (6-31)

The reason for separating the constant terms from the temperature
dependency is to allow the direct use of Betti’s reciprocal work theorem
in formulating the boundary-integral equation. Beginning with the
domain formulation, we obtain

f(o—o’)~£dv-f ef-Tdv (6.32)
<R> = - - <R>™ -—

where the initial stress due to the material inhomogeneity o’ is given
from (6.31) as

o' = c'(8)-¢€ (6.33)



Application of the equilibrium requirement on the stress field in (6.31)
results in the following Navier equation of equilibrium for the
displacement field in terms of the inhomogeneity field

LV_"'_‘I + v.g’ - 0 (6.34)

The inhomogeneous Navier equation appears in the same form as that for
the dynamic body force result (6.25). Consistent with the previous
approach, the term for the gradient of the inhomogeneous stress term,
V-0’, would be replaced by a global interpolation function for which a
particular solution to (6.34) could be found. The resulting
substitution would approximate the inhomogeneous stress state, as
follows

v.é’ - v.(g’(e).g) (6.35)

The global interpolation function in (6.35) must be evaluated by fitting
the terms to values of the gradient operator

V-(C'(8)-€) = (V:C')erC'(®)(V€) (6.36)

In order for (6.36) to be evaluated it will be necessary to specify the
gradients of both the local temperature and local strain at each
interpolation or collocation point. Neither of these two gradient
operators is generally computed in heat conduction or in stress analysis
modeling. Thus, it will be necessary as part of implementing (6.36) to
fit each field to its own global interpolation, from which the gradient
can be computed

v-c'(e) = V(Z. K(q-Q,)-f‘(Q,))
' (6.37)

N
Ve = v(f: K(q.Q,)-g‘(Q,))

The second approach, and the one reported herein, is to replace the
product term by the global interpolation
) N (6.38)
§'=C'(8) € ~ ) K(a.Q,)-¢'(Q)

j=1

The global interpolation in (6.38) is then operated on to approximate
the second term in (6.34). The particular solution for g’ can then be
found as

" (6.39)
a' = Z;Q(q.Q,)‘fl(Q;)
l-

where

y®ye®y (6.40)

6(q.Q)) = {C,+r(q.Q)C;)6®y+ (c2+r(q.Q,)C.)§®z+C:r(q'Q/)

and
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R,

€, =
301~ voom,
c R,(9-10v,)
2 T T30l -vom,
(6.41)
1

€2 = T -vom,

11-12v,
C, = ~——
a8(1 - v.)n,

The resulting interpolation for i' is of lower order than the previous

interpolations, in that the global function K(q.Q),) is differentiated
prior to finding the particular solution to Navier's equation for this
problem (6.34). The accuracy of the domain integral approximation is
degraded some, as discussed more fully in Chapter 4.

Using the particular integral solution, we obtain an equivalent boundary
integral equation of the form

(6.42)

g-af&-'rds- [-UdS+E'
£*), JLrEastL

Where u=u-u’, i=t-1', and the error term is

_E_I-f (ol_a’)’EdV (6"‘3)
<p> = - -

Solution of the above equation requires iteration in that the boundary
interpolation variables 2’(Q,)in (6.38) depend on the solution variable
€.

6.5 Numerical Results
6.5.1 The Form of the Global Interpolation Function

The boundary integral equations given by (6.13a), (6.22) and (6.42) are
exact statements of the body force boundary value problems. The
numerical implementation of these equations, however, requires both the
surface and volume discretization unless the error terms are assumed to
be zero; in that case, the solution requires the discretization of the
surface only. The error terms are given by the volume integrals
involving the difference between the actual and assumed body force
variable times appropriate kernels as indicated by eqns. (6.13b), (6.23)
and (6.43). Therefore, the accuracy of the solution depends on how well
the assumed field approximates the actual body force field. 1In the
earlier works of other authors [4-7] and in the present work, the body
force fields are approximated by a global interpolation function given
by eqns. (6.16) and (6.17). The choice of the global interpolation
function is restricted by two conditions. The first requirement is that
the function must be able to approximate the given field adequately,
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the second condition is that the function must be such that we can find
a particular solution to the governing differential eqns. (6.11), (6.24)
and (6.34).

Figure 6.1 shows a map of the interpolated temperature field at the base
of a cube subjected to constant temperature. The figure indicates that
the approximate field deviates from the actual field by up to 15.6 &.
However, the fields match exactly at the nodes, thus, the error in
global sense is minimized by a suitable selection of interpolation
nodes .

6.5.2 Application to Thermal Loading

For validation purposes, we analyzed a fully restrained cube subjected
to a uniform temperature field. The cube was modeled using 6 quadratic
boundary elements and the temperature field was interpolated in terms of
the 20 boundary nodes of the elements. The stresses computed were
within 0.0005 percent of the theoretical results indicating good
accuracy.

To further assess the validity of the procedure, we selected a hollow
sphere with external radius to internal radius ratio of 2. A 22.5°
segment of the body was modeled using 22 quadratic boundary elements as
shown in Figure 6.2. For the description of the temperature field by
the interpolation function, we considered all 68 boundary nodes that
coincide with the surface discretization.

We considered a linear temperature variation in the radial direction
given by © = 10r, where r is the distance from the center. Analytical
solution corresponding to radial temperature variation can be found in
Boley and Weiner [10]. Figure 6.3 shows a comparison of the theoretical
and computed values of the radial displacements along the radius of the
sphere. These results show excellent agreement between the theoretical
and computed values. The normalized hoop stress along the radius in
Figure 6.4 also indicates excellent agreement between the theoretical
and computed values. These results confirm the validity of the
procedure as well as indicate the ability of the global interpolation
function to approximate the linear temperature field adequately in a
global sense.

To examine the appropriateness of the interpolation function for higher
order variation of temperature fields, we imposed quadratic variationm,
given by 6= 100 + 10r + r2, and cubic radial variation, given by © =
100 + 10r + r2 + 0.2r3, of temperatures to the spherical model. The
results for hoop stresses shown in Figure 6.5, for the quadratic
variation of temperature, and in Figure 6.6, for the cubic variation of
temperature, again indicate excellent agreement between the theoretical
and computed values. The accuracy of these results provide a good
indication of the ability of the global interpolation function to match
higher variation of body force field in a global sense.
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Figure 6.1 Error of Interpolated Temperature Field at
the Base of a Cube Subjected to Uniform
Temperature of 100
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E = 2600
v=20.3
a = 104

Figure 6.2 BEM Map for Hollow Sphere
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Figure 6.3 Radial Displacement Along the Radius of a Hollow
Sphere Subjected to Linear Temperature Field
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Figure 6.5 Hoop Stress Along the Radius of Hollow Sphere
Subjected to Quadratic Temperature Variation
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Figure 6.6 Boop Stress Along the Radius of Hollow Sphere
Subjected to Cubic Temperature Variatiom
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6.5.3 Application to Vibration Response

The free vibration analysis part of the code was verified by comparing
the mode frequencies of a cantilever beam obtained by using finite
element and boundary element procedures. The free-vibration analysis
procedure is essentially identical to the work reported previously
(4,6], however, the displacement particular solution given by eqn.
(6.28) includes one additional term compared to the corresponding
solutions reported previously [4,6].

Table 6.1 shows the vibration modes for the cantilever model shown in
Figure 6.7. These results indicate that the inclusion of additional
term does not alter the computed values, however, the cost is increased
due to the need to compute this additional term.

Table 6.1

vibration Modes for the Cantilever Model

Mode 1 Mode 2 Mode 3 Nodes/ |CPU (sec)
Elements | VAX 8700

Beam Theory 472 708 4507
BEST3D [6) 523 945 4028 44/16 282
PBEM (current) 523 946 4024 44/14 323

To further investigate the accuracy and convergence characteristics of
the procedure, we selected two boundary element models, Figure 6.8, and
two finite element models, Figure 6.9. Table 6.2 compares the first
five modes of vibration for the cantilever models. The computed values
show that the results were improved by the use of finer meshes; the
results using the finer boundary element map seems to give the best
results at somewhat higher computational cost.

Table 6.2

First Five Modes of Vibration for the Cantilever Models

Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode S | Nodes/ CPU
Elements] (sec)

VAX 8700
BEM-1 2686 5441 13485 16810 25382 44/14 352
BEM-2 2810 5333 12736 16255 24523 86/28 1676
FEM-1 3033 5449 13191 17227 25141 195/96 158
FEM-2 2885 5354 12778 16224 24522 |1125/768 801
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6.5.4 Application to Temperature Dependent Properties

To validate inhomogeneous material procedure, initially we considered a
cube with linear variation of Young’'s modulus in one direction subjected
to a uniform tensile force applied in the same direction. The cube was
modeled using 6 quadratic boundary elements and for the interpolation of
the initial stress field due to material inhomogeneity we used all
boundary nodes of the elements as shown in Figure 6.10. The results for
tensile stresses were in error of up to 16 percent. To see the effect
of additional interior points on interpolation, we used 20 interior
points in addition to the 20 boundary points used before. The use of
interior points for the interpolation reduced the maximum error for
stresses to about 6 percent. The reason for higher error for the
material inhomogeneity case than the results obtained from a similar
model for the thermal problem can be seen from the fact that in the
thermal and free vibration analyses, only one field was approximated by
the interpolation function. In the inhomogeneous material analysis,
initial stresses are defined as the product of the strains and the
difference in material properties, eqn. (6.33). While the stresses
within the cube were constant, the strains were not since the Young'’'s
modulus varied. The interpolation function, therefore, was used for the
approximation of the product of varying material properties and varying
strain field.

To further investigate the procedure for temperature dependent material
properties, we modeled a hollow cylinder with an external radius to
internal radius ratio of 2. Figure 6.11 shows the BEM map used for this
problem. The cylinder was subjected to a linear variation of
temperature field along the radius, given by 6= 10r. It was assumed
that the Young's modulus varied linearly with the temperature given by E
-~ Eg(1-10%6). The normalized hoop stress along the radius using the
current procedure is compared to the corresponding results using the
finite element method in Figure 6.12. These results indicate good
agreement between the boundary element and finite element procedures.

6.6 Current Status and Future Efforts

The major part of the past year was mainly spent on developing a boundary
element procedure for body force problems using a surface transformation
technique that eliminates domain modeling. The computer code for thermal,
free-vibration, and temperature dependent material problems has been
completed. A preliminary verification of the code and the procedure has
been established as indicated by the numerical examples given in the
previous section. An additional particular solution for known thermal
gradients may be incorporated in this code which would effectively
eliminate large number of interior collocation points. As part of the next
year effort, the particular solution corresponding to high thermal
gradients will be included in the computer code.
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Figure 6.7 BEM Map for Slender Cantilever Beam
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b) BEM Map 2

E = 30 x 106
v =0.3

Figure 6.8 BEM Maps for Cantilever Beam

77



w\\.‘\\,\\\,x\xlle
‘l\.\\\[.\\;][
I\lx\\.\\ai\\ilrz
P —T 114
\\\\\1\\\\\/[
\\\K\\L\\\\\\llll
|- n\‘\\\/[
I\.x\\&\\/[
T\\\,\\.\T\]/
=

T\lf\lt\\l\\llvl
\\j\\\\\LX\l ™

L —

FEM Map 1

a)

sy
XHV\\\\\!L
Jv\l\.\\nr\n\y\,l H
.\1_\.\:\\..\\.:\:\.1.#r
| .I\\.\l\ll\_.\IIII
-1 .\Av\:\:\ir
L1 L
\\_\.1.\1-\1\1\_ v
vl‘\:\:\‘..\.‘l.\.
ll-\..\lu\:\.\.\:‘\.(
l.\u...\:\ 1111
!\r\lll..\:\l\\..
.\...\._\.\_.\.“;\111
T
T [~ T4
.I\A‘l‘\l.\.‘lv\‘ \_‘IIL
..\:\:\:ul_\‘\-‘lv‘
I\v\“‘v\‘l
1\?\.\.‘.7\.1\:\,1\.1
.LH.\[\:\&\[.\.:\LI
..\..\\‘Lv\..\lv\..\:\x
i ~ \Ar‘.(.L s o
gansaREsill
1+ 11 7ﬁr
<

FEM Map 2

b)

E = 30 x 106

v=20.3

Figure 6.9 FEM Maps for Cantilever Beam
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Figure 6.10 BEM Map of Cube with Interior Nodes for Interpolation
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FPigure 6.11 BEM Map for Hollow Cylinder
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While the results reported are encouraging, the role of interpolation
function in the accuracy of the solution needs further investigation. The
investigation on the selection of interpolation function which was partly
established in the past year will be concluded in the next year.

The examples presented in the previous section established the validity of
the procedure for body force problems. The next year effort will focus on
solving specific problems identified by the project, such as the turbine
blade model. Before the application of the procedure to large-scale
problems, the efficiency of the computer code needs to improved. As
indicated in the report corresponding to the validation of the BEST3D code,
the BEM procedure for some class of problems is not as efficient as the FEM
procedure. In most instances, a large part of the computational effort was
spent on the evaluation of discretized surface integrals. The numerical
implementation procedure used in the current code is essentially identical
to the technique used in the BEST3D [11] computer program except the
inclusion of a variable transformation procedure. The variable
transformation procedure implemented in the current code slightly improves
the efficiency of the numerical integration effort, however, the results do
not seem to be as reliable as the sub-segmentation scheme results. An
improved numerical implementation is necessary to make the BEM solution
tool attractive to a wide-class of problems. Investigation into the
development of improved numerical integration procedures will be pursued as
part of next years effort.
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7.0 NESSUS CODE VALIDATION STUDIES
7.1 Overview of Code Validation Effort

To validate the NESSUS code, a set of problems were chosen to exercise
various features of the finite element and probabilistic modules. The
validation problems were selected on the basis that (1) a closed-form
analytical solution could be generated for the structural response and that
(2) an "exact" probabilistic solution could be generated from this
closed-form solution, either analytically or through Monte Carlo
simulation.

A plan for validating the NESSUS probabilistic finite element code was
included in the PSAM First Year Annual Report (Vol. III, Section 7.4). The
original plan consisted of nine validation problems. The number of the
problems has increased to fourteen (see Table 7.1) to test other
capabilities of the NESSUS code.

During FY'87, eight validation problems were successfully solved. These
include case numbers 1 to 3, 5 to 7, 9 and 10. The results were summarized
in the PSAM Third Year Annual Report (Vol. I, Appendix A).

During FY'88, four validation problems have been solved. The descriptions
for these four problems and the problems to be completed in FY'89 are
listed in Table 7.1. Other validation problems may be added as needed.
More detailed summaries of the validation cases completed during FY'88 are
documented in Appendix F using a standard format designed to include all
the required input data and information. In addition to validating the
code, a new user can use these problems to gain confidence that he is using
the code correctly.

For each problem, several levels of accuracy were obtained by using the
NESSUS code and the probabilistic algorithm. As a first step, a mean-based
perturbation database was generated to generate a linear response surface.
The result is the MVFO solution.

In the second step, one or several probability levels were selected. For
each probability level, the MVFO solution was then improved by replacing
the center of perturbation (the ndeterministic state” in the NESSUS/FEM
module) by the most probable points generated using the previously
established linear response surface. The "new" deterministic solution was
then paired with the "old" MVFO probability estimate to form the AMVFO
solution.

The probability estimates were further improved by using the perturbation
solutions around the updated point. This procedure is called the "first
iteration." The solution can be further improved by using additional
iterations until the solution converges. The NESSUS probabilistic analysis
algorithms are documented in {3].

In all the validation problems studied, it was found that the
first-iteration solutions were sufficiently accurate and that even the
AMVFO solutions provided good accuracy for most cases. Therefore,
additional iterations were not conducted.
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In the presentation of the results, an ‘adjusted exact’ CDF was defined for
each problem. The adjusted solution was defined to match the analytical
deterministic-(using mean or median values) solution with the FEM solution.
The adjusted CDF provides a more reasonable reference to judge the accuracy
of the NESSUS probabilistic solution.

In generating the CDFs, the analysis concentrated on only one of the tails
of the distribution, depending on which tail was considered more important
in a reliability design.

When closed form probability solutions are not available, exact solutions

were obtained by using Monte Carlo simulation. The "exact" solutions were
compared with NESSUS results to validate the code as well as the solution

algorithm.

7.2 Validation Results Completed in FY’88
7.2.1 Analysis of Rotating Beam

This problem is similar to validation case 5 [2] which uses plate finite
element. The present problem uses Timoshenko beam elements. The
rotating beam, as illustrated in Figure V-1 of Appendix F, was modeled
using 20 beam elements. There are five random variables: Modulus of
elasticity, length, thickness, width, density, rotational frequency and
inside radius.

The response functions consider the tip axial displacement and the first
bending frequency. The analytical solutions were derived using
Galerkin’s method.

The NESSUS/PFEM module has been used successfully to obtain the AMVFO
solution at several selected probability levels. The agreement between
the NESSUS solution and the ‘adjusted’ exact solution is excellent.

7.2.2 Static Analysis of Spherical Shell

This validation problem (case 8) considers a spherical shell as
illustrated in Figure V8-1 of Appendix F. This problem validates the
NESSUS's shell modeling capability. The FEM model uses 200 shell
elements (NESSUS element type 75) including 180 four-node elements and
20 collapsed, 3-node elements. The analytical deterministic solution
for the maximum stress (at fixed base) is available. The difference
between the theoretical solution and the NESSUS solution is 3%.

There are two random variables: internal pressure and thickness. By
assuming that both random variables are lognormally distributed, the
response is also a lognormal random variable. In solving the
probabilistic analysis problem, the convergence limit must be small
enough to force at least one iteration in the NESSUS perturbation to
generate a correct perturbation solution. Figure V8-2 in Appendix F
shows very good agreement between the 'adjusted exact' solutions and the
NESSUS AMVFO solutions.
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7.2.3 Buckling Analysis

This problem considers the critical buckling pressure of a thin shell
under uniform external pressure as illustrated in Figure Vil-1. The
goal was to establish the CDF of the critical pressure.

The FEM model uses 40 four-node shell elements. There are two random
variables. Based on the analytical solution and the distribution
assumption, an exact CDF can be obtained.

The MVFO and the AMVFO solutions were obtained. Figure V11-2 clearly
shows that the NESSUS AMVFO solution agrees very well with the adjusted
solution even though there is a 11% difference between the analytical
solution and the FEM solution, computed at the median values of the
random variables. This suggests that the response variable
sensitivities are approximately the same for both the analytical and the
FEM models.

The fact that the adjusted exact solutions match well with the NESSUS
solutions suggests that the characteristic of a tail distribution (i.e.,
the 'shape’ of a tail distribution) may be preserved if the physical
characteristics (e.g., the response sensitivities) are essentially
correct. This validation result suggests a strategy for efficient CDF
approximation for complicated structural components. For example, it
may be possible to use a coarse (but reasonable) FEM model to establish
the shape of the tail distribution, then use a refined FEM model to
calibrate (i.e., shift) the CDF using a deterministic solution.

7.2.4 Random Vibration Analysis of Beam

In this validation problem, a cantilever beam is subjected to random
base excitation. The random variables include the modulus of
elasticity, material demsity, damping factor, length, thickness, width,
acceleration spectral density and cutoff frequency. The acceleration
spectral density is modeled as a truncated white noise with cutoff
frequency properly selected to excite, approximately, only the first
mode. The response function considers RMS (root-mean-square) of the tip
displacement. The finite element model, the random variables definition
and the probabilistic results are included in Appendix F. The agreement
is excellent between the NESSUS probabilistic result and the adjusted
rexact’ solution based on the Monte Carlo simulation.

7.3 Validation Plans for FY'89

According to the previous validation plan (see Table 7.1), there are
two random vibration problems left. In addition, three new validation
problems are proposed to validate transient and nonlinear capabilities.
Descriptions of these planned problems are given in the following. Other
problems may be added as necessary.

7.3.1 Random Vibration Analysis of Cylindrical Shell (Case 13)

This problem considers a cylindrical shell subjected to a random uniform
ring loading at a section of the shell [4].
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7.3.2 Random Pressure Loads on Plate (Case 14)

The goal of this validation case is to validate the NESSUS's capability
to solve random pressure field problems. In this validation case, a
plate is subjected to a random pressure field [5].

7.3.3 Elastic Response of a Pulse-Loaded Beam (Case 15)

This problem considers a simply supported beam subjected to a uniformly
distributed pulse-load. The transient response {(maximum displacement)
will be considered in the response variable [6].

7.3.4 Elastic-Plastic Static Response of a Beam (Case 16)

This problem is similar to the previous problem except the load will be
gradually applied up to beyond yielding of the beam. Perfect plasticity
will be assumed [7].

7.3.5 Elastic-Plastic Response of a Pulse-Loaded Beam (Case 17)

The previous pulse-loaded beam problem (Case 15) will be extended to
consider elastic-plastic transient response [8].
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8.0 NESSUS CODE VERIFICATION STUDY
8.1 Introduction to Probabilistic Frequency Analysis of a Turbine Blade

The NESSUS verification studies in FY'88 were directed towards the linear
dynamic analysis capabilities. The first verification application of
NESSUS' dynamic analysis capabilities was the probabilistic frequency
analysis of a typical space propulsion system turbine blade. The
variations in the frequencies of the first few modes of the turbine blade
must be monitored and controlled to avoid resonance conditions. This can
occur due to the periodic excitation forces generated by disturbances to
the gas path generated by upstream nozzles and struts. The methodology for
determining the probabilistic frequency response is very similar to that of
obtaining probabilistic response of static response variables. Since the
frequency response function can by highly nonlinear, it requires special
precautions by the user to validate the results obtained.

8.2 1Initial Verification Studies For the Frequency Computation

The purpose of the initial verification studies was to verify the NESSUS
frequency results with results obtained from other programs and also to
check the performance of perturbation based frequency extraction alogrithm
as implemented in NESSUS. It was also the purpose of the initial
verification studies to check the correctness of material orientation
effects as implemented in NESSUS for single crystal materials.

A 4x4x10 (Figure 8.1) cantilever beam element model was used to verify the
frequency analysis results for two material orientations. The anisotropic
material properties used are also shown in Figure 8.1. The NESSUS results
using Type 7 and Type 154 elements are compared with ANSYS results in Table
8.1 for two material angle orientations. For the identical formulation of
Type 7 isoparametric element, both programs give identical results.
However, it is known that Type 7 elements are excessively stiff and
selective reduced integration schemes are inappropriate for anisotropic
materials. The enhanced continuum element Type 154 is much more flexible
and is capable of representing pure bending modes accurately. Thus, the
NESSUS results are in closer agreement with ANSYS results when compared
with an element formulation containing bubble functions.

The next phase of initial verification studies were directed towards
obtaining the frequencies for the perturbed system. There are two options
available in NESSUS to extract eigenvalues and eigenvectors for the
perturbed system. In one method, the subspace iteration technique is
simply applied to the perturbed system with initial trial eigenvectors as
that obtained from the deterministic structure. In the second method, an
iterative procedure is used to obtain the eigenvalues and eigenvectors from
the subset of modes of the deterministic system. Both the procedures were
applied to a perturbed system, using the simple cantilever beam model as
well as using a large turbine blade model (Figure 8.2). The material
overtation angle was used as the perturbation variable. The results of the
perturbation of 10 degrees and 2 degrees material orientation angles are
shown in Table 8.2 and Table 8.3 respectively for the simple beam model.
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The larger angle perturbation was initially tried as the amount of change
in frequency was only about 5% for 10 degree material orientation
perturbation.

The results indicated that the perturbed procedure took about as much as
95% of the resolution method with no convergence for certain vectors.

There was also significant percentage differences in the sensitivity
information for larger angle perturbation. In order to verify whether the
above conclusions are also applicable to larger models, a turbine blade
model which was used in earlier probabilistic finite element static
analysis was used in the frequency extraction exercise. The model is shown
in Figure 8.2 and the details of the model and the results are shown in
Table 8.4. The results supported the conclusion that the marginal increase
in cost using resolution procedures are preferable as they obtain more
accurate sensitivities and convergence characteristics are much more
predictable. Thus, further probabilistic frequency analysis verification
exercises used the resolution procedure.

8.3 Probabilistic Frequency Analysis of Turbine Blade

Experience in verification exercises using the turbine blade model shown in
Figure 8.2 and the results reported in Table 8.4 demonstrated the high core
demand due to incore solution capabilities implemented in NESSUS. This is
particularly so in dynamic analysis as stiffness, mass and damping matrices
are stored entirely in core. This may not be a hindrance for dynamic
analysis of large models using NESSUS as machines with 16, 64 and 256
million words of high speed memory may soomn be widely available. However,
it can be serious a problem in running NESSUS in small core machines,
especially dynamic analysis. Further, experience with virtual machines
indicate excessive paging for large sized models. In general, a single
refined model as shown in Figure 8.3 is desirable for use in static
analysis, frequency and response analysis and fatigue life determination.
However, due to the core demand a coarser model shown in Figure 8.4 was
used for probabilistic frequency analysis. Further, when probabilistic
methods are used in the initial design phase to improve or estimate
reliability, coarser models are adequate.

The random variables and the assumed statistical parameters are shown in
Table 8.5. The analysis considered the variations in material axis
orientations, material elastic constants and geometric variations. The
material axis variations are typical for cast blades observed from
inspection data for directionally solidified blades. The variations in
elastic constants were mainly obtained from expert opinion. Geometric
variations were introduced in the analysis through variations of the
spatial location of the blade with respect to stacking axis. It has been
observed that for cast blades with a machined firtree, the majority of the
variations occur during machining operations in the form of variations in
geometric lean, tilt and twist angles. Thus, the geometric random
variables are used in the analysis procedure as rigid body shift of the
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blade with reference to the turbine radial line. The variations in the
mass of the blade observed in practice were introduced as variations in
mass density.

In the probabilistic frequency analysis of turbine blade reported in this
study, the stress stiffening effects have been included. The stress
stiffening effect is small for short and stiff blades such as the ones used
in this study. However, the stress stiffening effects were included to
capture the effect of rigid body geometry shifts on centrifugal stresses
and thereby frequency due stress stiffening.

The analysis procedure used in this study used the mean value first order
method and the advanced mean value first order method implemented in
NESSUS/FPI. For the mean value first order method one deterministic and
ten perturbation runs were made for the ten random variables considered.
Each perturbation case for modal analysis was preceded by a corresponding
perturbation case for static analysis to obtain the correct initial
stresses. In summary, one deterministic static analysis plus one
deterministic modal analysis followed by ten perturbed static analysis and
ten perturbed modal analysis were conducted to obtain mean value first
order solutions. All the above cases were made in a single computer run.
The results of the deterministic modal analysis are shown in Figure 8.5
through Figure 8.7 in the form of contour plots.

Perturbation about the mean value were obtained using NESSUS/FEM and
NESSUS/FPI was used to obtain the first estimate of the distribution of
frequencies using MVFO method. This is displayed in Figures 8.8 through
8.10 under the legend MVFO.

The probabilistic sensitivities obtained using MVFO method is tabulated in
Table 8.6 for the first modes of interest. The results point out the
elastic material property variations, either due the material angle
orientation or the variations in the properties themselves contribute most
to the variations in the frequencies of the blade. It further points out
that the variations in primary material axis orientation plays a dominant
role in Mode 1 and Mode 2 while the variations in shear modulus and
secondary axis orientation play a dominant role for variations in Mode 3.
The effect of these dominant random variables on mode shapes is also of
interest. Figures 8.11 through 8.13 show the respective mode shapes for
the dominant random variable perturbed by one standard deviation. It is
seen that there is no significant change in mode shapes. The results of
the estimate obtained using MVFO method are also compared with operational
experience for similar but different set of blades in Table 8.7. The wider
variation for Mode 3 observed in the experimental data can be attributed to
the directionally solidified sample blades for which the secondary axis
orientation was not controlled. The analytical results will be compared in
the future with single crystal blade test samples where all the material
axis orientations are better controlled and test data becomes available.
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Improved estimates to the distributions were obtained by using ADMVFO
method where the design points were successively moved for the seven point
cumulative distribution function. The ADMVFO method results are displayed
in the same Figures 8.8 through 8.10. While variations from the linear
response surface assumption is small for mode 2 and mode 3, the deviation
is significant for mode 1. It is also observed that the first mode of the
turbine blade frequency exhibits a truncated distribution in the lower tail
region. Further it pointed out the possibility of having more than one
Most Probable Point (MPP) in the probability region of interest with the
response surface being nonlinear concave or convex function. This is due to
the cyclical nature of the material orientation effects on the elastic
properties of the material in the primary directions of bending of the
blade. Additional exercises using the suggested ADMVFO method with
iterations resulted in obtaining different most probable points during
successive iteration. This resulted in constructing a simple model and
exercising it for a nonmonotonic response surface. The details of this
study is reported below. Since the material orientation angles are the
random variables that can cause nonmonotonic response surface, a simple
cantilever model Figure 8.14 was constructed and exercised with the three
material orientation angles as random variables. For mode 1, the primary
material axis orientation is the dominant variable and its effect on
response surface is schematically shown in Figure 8.15. The results from
the MVFO method and the uncorrected results from the ADMVFO method are
shown in Figure 8.16. The results from ADMVFO method as shown are invalid
as the cumulative distribution function is not increasing monotonically.
The modified monotonically increasing CDF is obtained by adjusting the CDF
curve for probabilities calculated in the lower tail region as shown in
Figure 8.16. This exercise pointed out the additional constraints that
must be coded when FEM and FPI packages are tightly coupled to
automatically produce an accurate cummulative distribution function using
ADMVFO method.

8.4 Dynamic Analysis Solution Strategies for Systems Subjected to
Multisupport Excitation

Most of the space propulsion duct components are attached to the engine
and/or vehicle structure at multiple support points and are subjected to
shock and vibration from more than one source at these attachment points.
These components are in general, modelled as systems subjected to
multisupport random or harmonic excitation. The governing equation of
motion of such a system can be written in the form:

MX. + C.X. + K.X. = F

66 * e%s * X% = Fo (8.1)
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Where Mg, Cg and Kg are the mass, damping and stiffness matrices
respectively. Fg is the global force vectors. Equation (8.1) can also be
re-written in the partitioned form:

"aal Man | Y, | Gaal fan | ) M
T - T .
"RER X, - clc X
Map I Mo b Cap P o b (8.2)
Kaa l Kab xa Fa
PR L I L Y G .
-
Kab | %pp Xb Fb

Where X; is the absolute nodal displacement vector of size n and Xp is the
base displacement vector of size m. F;; is the nodal force vector, (from
pressure load, etc.) which is a null vector in absence of nodal loads. Fp
is the unknown base reaction. The subscript a and b in the matrices K, C,
and M correspond to nodal (free) and base (prescribed) degrees-of-freedom
(DOF) respectively.

Different methods are available that can handle such multisupport
excitation problems. The first one is the direct approach of writing
governing equation of motion in terms of absolute displacement along nodal
DOF. The main disadvantage of this approach is that, the right hand side
of the equation has all three items, the base displacement, velocity and
acceleration as excitation to the system.

The second approach, known as "unit base displacement” or more commonly
"influence coefficient" or "pseudo-static" displacement approach. Here the
natural frequencies and mode shapes of the system are obtained by
restraining all the base DOF. Next, a sequence of static analyses are
performed to obtain the influence coefficients (i.e., static response of
the system) by prescribing unit displacements along base DOF, applied one
at a time, while keeping the remaining base DOF fixed. These influence
coefficients are then utilized to obtain the response of systems subjected
to multibase motions.

The third approach is analogous to penalty mass used in static analysis to
handle prescribed displacement problem. This is commonly referred as "Big
Mass", "Seismic Mass" or "Penalty Mass" approach. A large mass several
order of magnitude larger than the system mass is lumped along each base
DOF. The natural frequencies and mode shapes of this free-free system,
that include the rigid body modes and near zero frequency modes in addition
to the regular modes (fixed base) are then obtained using a negative power
shift. Prescribed support motions are (approximately) achieved in an
indirect way by exciting the support masses along the base DOF with forces
equal to the penalty mass times the corresponding prescribed acceleration.
This approach can be carried out in both "NESSUS" and "STARDYNE". STARDYNE
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is a commercial code that is used in the industry particularly to solve
random vibration problems. The NESSUS results are compared with STARDYNE
results as part of this code verification effort. The subsequent sections
will be restricted to the "penalty mass" approach, with a discussion of its
relative advantages or limitations in handling the multisupport excitation
problem.

8.4.1 Big Mass (Penalty Mass) Approach

In this approach the prescribed support degrees of freedom are also
treated as unknowns. Huge masses, several orders of magnitude higher
than the sum of all the diagonal terms in the mass matrix, are lumped at
each base DOF. The unknown base force vector Fp is treated as a known
vector with magnitude equal to the big mass multiplied by corresponding
prescribed accelerations. The governing equation of motion of this
entire free-free model will be the similar to eqn. (8.2) and is given

by:

Maa | Mab Xa Caa ' Cab Xa
--T-I---- il G --T-|'--' S
Map | Mpp_| Ky Cab | Cop_[%y
(8.3)
Kaa ‘ Kab Xa 0 _9_- 9
dFare BRI
Kap ! Fop_{(*u bo_{{"b
Rearranging the 2nd of the above equation we get:
M B L T _ T.ow. x
Mo X = l_'"ab Xy = Cap *a~ Cob *u ™ Fab Xa = Xbb xu_l * "pb "b (8.4)

Observing the above equation, one can see that the terms within the
square bracket are the products of two smaller numbers and can be
ignored as compared to the other term in the right hand side. This is
the penalty mass approach of indirectly pushing the unknown base
acceleration X, towards the prescribed acceleration X,, i.e.

- -

X - X_ as penalty mass - ®

u b (8.5)
or

; = ; for very large Mass

116



It should be noted at this point that even if the rigid body mode of the
system is eliminated by attaching the base points to the ground by some
springs with finite stiffness (same or lower order of magnitude as the
other elements), the governing equation of motion will look exactly the
same as eqn. (8.3), except that elements of Kpp will increase slightly.
Therefore, relation (8.4) will still hold good. This approach will
referred in the future as ‘modified or constrained Big Mass' approach.
The governing equations of motion (8.3) can be expressed in the compact
form:

. . _ . (8.6)
M X + CX + KX Gmxb

Where the number of unknown DOF N, is (n+m). The vector X represents
absolute nodal displacement.

This approach can be carried out in both "NESSUS"™ and "STARDYNE" for the
verification models. At present, "NESSUS" uses an inbuilt penalty mass
approach to handle multisupport excitation problems. The "Big Mass"
approach is, however, quite prone to numerical problem (instability) and
one must be careful in selecting the optimum penalty mass that is
neither too big to cause ill conditioning of the mass matrix, nor too
small to yield the desired base motion. The order of magnitude of the
penalty mass is the most important parameter that determines the
accuracy of this approach. Theoretically speaking, when the ratio of
the penalty mass to the system mass approach infinity, the response at
the base points approach the corresponding desired base motions
specified indirectly as forces. However, in a digital computing machine
with only finite significant digits, this creates a numerical problem.
The penalty mass should not be too large as compared to the average
diagonal elements of the mass matrix of the system to cause ill
conditioning of the matrices, at the same time, it should be
sufficiently large compared to the total mass of the system, so that the
base responses are quite close to the prescribed base motion. The
optimum order of magnitude is actually a machine dependent parameter and
one would like to select a value as large as possible without getting
into numerical trouble.

On a 64 bit machine, a penalty mass of five or six order of magnitude
higher than the average diagonal (non-zero) mass of the system may be
considered as an optimum value (compromise between two extremes), since
there will still be six to eight more significant digits left depending
on the precision of the machine. It should be noted at this point that
as one starts refining a model, the average value of the diagonal
elements of mass matrix get smaller, thus allowing a smaller penalty
mass to avoid ill conditioning. This will cause a larger difference
between base response and prescribed base motion. For this reason, the
inbuilt feature in NESSUS that uses a penalty mass million times larger
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than the SRSS value of positive diagonal elements of mass matrix was
avoided in order to have a direct and better control over the selection
of penalty mass.

For systems with large number of dynamic DOF, free free models often
encounter a numerical problem during the modal extraction. It has been
observed that there is a tendency of missing rigid body and near zero
frequency modes and/or converging to the same mode twice. This ill
conditioning problem is aggravated even further when the number of free
supports (and consequently lumped big masses) increases. This problem
can be handled in several ways. One such approach that is adopted in
the verification problems is the "constrained penalty mass approach”.

In this approach, the system is properly (and preferably symmetrically)
supported to remove all the rigid body modes (RBM) by flexible springs
that are grounded at one end and attached to the penalty mass at the
other end. There is no need to specify a negative power shift for this
stable system. The three RBM are then replaced by three additional near
zero frequency modes. Those mode shapes, however, must be very close to
the rigid body modes for the free free systemn.

The added springs to support the lumped masses should have stiffness,
preferably one or more order of magnitude lower than the overall system
stiffness (not the stiffness of individual element). The system
stiffness along each support DOF can be easily obtained from a static
run with unit displacement along that DOF, while keeping all other
support DOF fixed. The reactive force at that support point along that
DOF in an equilibrium check is the corresponding system stiffness. It
should be noted at this point that one needs to know only the order of
magnitude of the system stiffness. Furthermore, there is no need to use
different spring stiffness at different support points along a
particular direction, but the stiffness in different directions, must be
different for a better convergence of approximate rigid body modes.

8.4.2 Modal Analysis

Expanding the displacements in terms of modal coordinates aj, and mode
shapes ¢, i.e.,

N
X= ¥ a; &
jml (8.7)

and assuming damping matrix satisfies the orthogonality condition, eqn.
(8.6) decouples into modal equations of the form:

m -

e . 2

a. + 20:w:d; + w;d; = )R ¢ X 8.8

i 9% 1% 5. mj by (8.8)
(i=1,2, .... N)
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Where w, and %, are the i-th natural frequency and modal damping ratio

respectively, and the participation matrix is:

m m (8.9)

where ¢ is the modal matrix

fo...e ] (8.10)

$ - [Q' | ¢ N

2

8.4.3 Random Vibration Analysis (Frequency Domain Approach)

Here only a brief outline of the modal, frequency domain, random
vibration solution procedure is presented for a simple case that
corresponds to the "penalty mass approach®, where excitation is
represented by base acceleration only. Assuming base acceleration to be
uncorrelated, the power spectral density function (PSDF) of modal
coordinates and its derivatives can be written in the form:

m

o -
T Tx,ox. (R) v Y
g1 Dg Dy Mee My
S (Q) =
a,a. 2 2 . 2 2 .
k™j {mk -Q° + 12(kqu} {wj -Q - 12CjujQ}
8.11
5; 5 (2) = sta L (@) (8.1D)
k™ j k™j
T () =98 s, . ()
akaj akaj
i - =l

Where S; ° (Q) is the prescribed PSDF of &t-th base acceleration.
| N

The covariance matrix of modal coordinates (or its derivatives) can be
obtained by integrating the area under the PSDF curve over the entire
frequency range, i.e.,
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elaMa M. 1 % s (a).da=-o (8.12)

k ] da . da,; akaj

where E[-] denotes expected value.

The integration in eqn. (8.12) is carried out (usually) numerically over
a finite prescribed frequency range. Once the covariance matrix of modal
coordinates is obtained any arbitrary response quantity that can be
expressed as a linear combination of the modes can be evaluated by using
the simple superposition principle.

8.4.4 Modal Superposition

Let R be vector with known covariance matrix Zs, given by:

.
I, = € [RR'] (8.13a)

RR

Let U be a vector that can be written as linear combination of R, i.e.,

{u} = [D ] - (R} (8.13b)
UR

Where DUR is the linear transformation matrix. The covariance matrix
of U can be easily obtained from:

T (8.14)

T
Ly = ELW T =04 - 2gg Oyg
In the "Big mass" approach, e.g., the absolute displacement can be
expressed as:

{x} = (&] {A}

Where ¢ is the modal matrix and A is the modal coordinate. The
covariance matrix of displacement response can be obtained by using egn.
(8.14), i.e.,

T

T
Ly=EXX]=01,,3

AA

WVhere I, is the covariance matrix of modal coordinates that is already

known. Covariance matrix of velocity and acceleration of nodal points
can be obtained in exactly the same way. Covariance matrix of any other
response quantity can be similarly evaluated e.g., to obtain stresses the
DUR matrix will represent the stress-displacement matrix, for stress
resultants it is nothing but the element stiffness matrix.
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8.5 Simple Verification Problems
Test Problem 1

Consider a very simple spring mass model supported at two points A and B as
shown in Figure 8.17. The governing equation of motion of this undamped

DOF system is given by:

2

2 )
o X, = ) (x] + X

b 2

3) (8.15)
where w = 2K/m = natural frequency

Consider the case when the symmetry of response is destroyed by applying
two different amplitudes of excitation at the two support points, i.e.

X] = A°S1n9t

and

-

*3 = 2a_cosat
The steady state response governed by eqn. 8.15 is:

2

A /e
= - ——— {Sinqt + 2Cosqt}

0 (8.16)
2r2(l - r2)

X

The spring forces in the two members are not the same due to loss of
symmetry. They are given by:

-kAo/u2 2
F] =k (x2 - x]) - {(2r" - 1) SinQt + 2Cosnt}
2ro(1 - r7)
—kAO/u2 2 (8.17)
F2 =k (X3 - x2) - ;_E___———ET {- SinQt + (2 - 4r") Cosqt}
r (1 -r
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The normalized amplitude of spring forces are given by:

B 2 .4/ 2r0-r%))

2 2
1" IF1 ‘ / (kAo/w ) = (2r -1

(8.18)

] -

2 F2 I / (kAo/uz) = (2—4r2)2 +1 / {2r2(1—r2)}

8.5.1 Penalty (Big) Mass Approach

In this approach, two large masses are lumped at the two support point
as shown in Figure 8.18. The governing equation of motion of the
free-free system is given by:

M X-l K =K 0 gx]
- 0 -K K l
M Xs Xq
. (8.19)
f] M X,

bl |
j3 Mx 4
where Xi and ¥! are the desired (prescribed) acceleration at the two

support points. X, and X; are the corresponding response (achieved base
acceleration) of the two big lumped masses. Solving the eigenvalue
problem, the three natural frequencies and ode shapes are given by:

©,2,3 =)0

wo 0/2
wg 1 + a/2 (8.20)
1 { ]: -a/2§
. = 1 M [ R 0 . = 1
i ’
1 2 -1 3 -a/2
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The first mode is the rigid body mode which does not contribute to the
stress response. However, this must be included if correct
displacement, velocity and acceleration responses are needed. The
second one is a near zero frequency mode that handles the differential
support motion. The third one is a normal mode that is approximately
the same as the mode with fixed base support.

Expanding the displacements in terms of modal coordinates aj and the
mode ¢, shapes, eqn. (8.19) decouples into modal equations of the form:

. ) : o
3 + oy ay = (X xg)

2 1 b | ]
KA T A e L (8.21)
- 2 _1 hal | bl ]
A3 + w3 33 = o (X +xg)

Once the modal coordinates are solved, the displacement responses can be
easily obtained by using modal superposition. The steady state response
of the modal coordinates due to excitation type II, i.e., %!=A,Sin0t
and X;-2A,Cosﬂt

A

a, = 9 5 > {SinQt + 2CosQt}
(2 + a) (u] - Q)
Ao

a, = ———— {SinQt - 2Cosqt}
2 2(w§ - 92) (8.22)

-A
a; = 9 {singt + 2Cosqt}

(2 + a) (ug - %)

It should be noted at this point that w, is not exactly equal to zero

when computed on a digital computer because of round off errors.
However, it is very small (several orders of magnitude smaller than the
near zero frequency wj;). The displacement responses can be obtained by
modal superposition. They are given by:
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X, =a, + a (8.23)

Substituting back eqn. (8.22) into eqn. (8.23), we get:

1 1
x; = A [{ + + 2 :
1 } Sinqt
O 2ra) (B -ad) 2a-9D) 22 4a) (o) -2
(8.24)
| ] :
+{ + = , }  2Cosat)

2

— -
) 26 -2h) 224 a) (wl - @)

(2 + a) (wf -Q

Now assuming Q2 is much larger as compared to w; and w,, we obtain:

a W

X, = A[ =2 . singt + . Cosat]  (8.25)

1700 502 + a)0 (2 + 0)92(u§ - g

)

Finally, considering the fact that the mass ratio a << 1 the above
expression yields:

- Ao '
X, = —= SinQt = x

1 Q2 1

= prescribed base motion at support 1.

Similarly, one can show that

-2A
9_ . cosat = X4 ' = prescribed base motion at support 2

Q

X3
and the absolute displacement at node 2

- A /u2
X, = o 3 . {Singt + 2Cosqt} (8.26)

2 2 - r2)(2 + )
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comparing the above expression with the one in eqn. (9.16), we see that
they are identically the same as a-0.

For the NESSUS verification run K = 250000, mg = 200 and Mg = 5.0E6
(i.e., =« = _4E -4) were selected. The system parameters are shown in
Figure 8.18. The mode shapes and the natural frequencies are obtained
in NESSUS using a negative power shift. The NESSUS results can be
compared to that from analytical expressions in eqn. (8.20). They are
presented in Table 8.8. NESSUS modal results agree quite well with the
analytical solution.

The analytical results obtained earlier in eqns. 8.16-8.18 are valid for
harmonic excitation. Similar relationships also hold good between RMS
excitation and RMS responses for a narrow banded random excitation when
the two base motions are completely uncorrelated. An acceleration PSD
level of 5 g2/Hz over a band of 1 Hz for DOF x, and 20 gz/Hz at the
other end (DOF x3) were selected. This is achieved indirectly by
specifying a force PSD equal to big mass squared times the corresponding
acceleration PSD. They are also shown in Figure 8.18.

The responses computed using the "Big Mass" approach and the analytical
expressions described earlier are observed to be reasonable close. The
RMS displacements along nodal DOF are presented in Table 8.9. The RMS
stress resultants are presented in Table 8.10.

It is worthwhile to mention that the free free model used in the penalty
mass approach can often lead to inaccurate modal solution, specially for
large models. This can be avoided by using a constrained penalty mass
approach.

8.5.2 Constrained Penalty Mass Approach

As discussed earlier, this is just an extension of the "Big Mass"
approach where the rigid body mode is eliminated from the system by
constraining the big masses by flexible springs as shown in Figure 8.19.
Here both of the big masses are constrained for the sake of symmetry
even though only one of them needs to be constrained to make the system
stable. The governing equation of motion then takes the form:

(K+BK) -k 0 X Mx

1 1 1

- - - 8.27

m Xo 0+ K 2K K X, 0 ( )
- )
M Xq 0 -K (K+B8K) Xq le3

which is exactly the same as eqn. (8.19) except that the diagonal terms
in the stiffness matrix associated with the big mass d.o.f. increased,

making the stiffness matrix nonsingular. Here also for large M, X, and

X, will approach ¥ and X;, the prescribed base motions as long as 3 is
small (preferably less than 1). The natural frequencies are given by:
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) - W a(1+8) /72
(8.28)
-0 o)) g a(1:8)° 1/2
5 )+ (1 + T ) - a(2B41) ]

Looking into the expressions for natural frequencies it can be observed
that it is more sensitive to « values than the 3 values. A recommended
value of B will be .001 to .0001, i.e., the stiffness of the additional
springs to be three or four orders of magnitude lower than the system
stiffness. The recommended x value will be around 10-6 for 64 bit
machines, that alone in this example can reduce the first two
frequencies close to zero and the third one much closer to the actual
natural frequency. However, even with this relatively large a and 3
values, the responses were observed to be reasonably close to this
correct solution.

The system parameters are shown in Figure 8.19. The natural frequencies
and the mode shapes can be obtained for this stable system with a
negative power shift. They are presented in Table 8.11. The natural
frequencies computed from the analytical expression in eqn. (8.28) is
also presented in the table for comparison.

The RMS responses, both displacement and stress resultants for this
example problem are not presented here since they are almost the same as
that of the unconstrained penalty mass approach as presented in Tables
8.9 and 8.10.

For this simple verification problem the RMS displacement responses
along nodal degrees-of-freedom and RMS stress resultants at the nodes
are observed to be fairly close to that obtained by analytical solution.

Test Problem 2

In this test problem a 2 DOF lumped mass system as shown in Figure 8.20
is considered. Constrained penalty mass approach is used to obtain the
response of the system subjected to multibase random excitation. The
natural frequencies and the mode shapes of this stable system is
obtained in NESSUS and STARDYNE without a negative power shift. They
are presented in Table 8.12. The modal characteristics obtained using
the two different programs agree reasonably well.

The system is subjected to band limited white noise excitation at the
two support points as shown in Figure 8.21. Two different types of
excitation are considered. One fully correlated and the other one fully
uncorrelated base motion. The RMS displacement responses for these two
load cases are presented in Table 8.13. Exact values of the prescribed
base motions are presented in Table 8.14. This is a check for the
accuracy of the Big Mass approach where prescribed base motion is
achieved indirectly.
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my = 0.2P88 m, = p.6470
M = 1.294E4

v M= 1.294E4
e | | |
! 100 ! 100 | 100 |
Figure 8.20 Simple Verification Problem 2
Using Constrained Mass
S..
*b

5 gz/Hz

20 Hz 500 Hz

Figure 8.21 Base Accelerations Applied to Simple Verification Problem 2
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The RMS stress resultants in the members are presented in Table 8.15.

it is worth mentioning at this point that NESSUS stress resultants are
computed and stored on a node base rather than element based computation
performed in STARDYNE. Therefore, duplicate nodes were defined in
NESSUS so that appropriate comparisons can be made. Once again, for
this example, NESSUS results were observed to be reasonably close to
that of STARDYNE results.

8.6 Introduction to High Pressure Oxidizer Duct Verification Problem

This study concentrates on conventional random vibration analysis as well
as uncertain random vibration analysis of high pressure ducts, typical of
the ducts used in Space Propulsion Systems. The dynamic loads in a high

pressure ducting system typically include:

1) Random base excitation loads with uncertain power

2) Harmonic pump generated base excitation loads with uncertain
amplitude and frequency

3 Internal random pressure loading of uncertain correlation
characteristics and power.

The major variations in system parameters can include:
1) Damping variations
2) Thickness variations

3) Variation in stress concentration factors due to
variable weld offsets.

The initial verification efforts concentrated on verification of NESSUS
results and capabilities exercised on typical line element duct model. The
results represented here are restricted to conventional random vibration
analysis. Continuing efforts in FY'89 addresses the uncertain random
vibration and probabilistic harmonic excitation features available in
NESSUS.

8.7 Random Vibration Analysis of High Pressure Oxidizer Duct Using NESSUS

A NESSUS model of a high pressure oxidizer turbopump discharge duct was
generated. The model shown in Figure 8.22 was generated using two noded
linear isoparametric beam element (Type 98) available in NESSUS. Figure
8.23 is another visual representation of the same duct model showing the
duct radius, flange radius, and the valve attachment sizes. The statistics
of the finite element model is shown in Table 8.16. Finite element models
of high pressure ducts typically contain the following features:

1) Pipe elements with provisions for internal fluid mass.

2) Elbow curved pipe elements with provisions for approximating
increased flexibility either through ASME flexibility factors
or other ways to account for ovalization. Effects of high
internal pressure are also included in the above calculations.
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Six spectral cases were run using five different PSD's shown in Figures
8.29 through Figure 8.33. These six base acceleration spectral cases are
identified in Figure 8.34. The RMS displacements at a typical node 27 due
to power spectrum case 6 is compared in Table 8.18 between NESSUS and
STARDYNE. The results are in good agreement. The result of the various
frequency band discretization and gauss quadrature used is also reported in
the same Table 8.17 using NESSUS. This was done to find the optimum
numerical integration scheme. The results indicate there is further room
to coarsen up the frequency band discretization and still obtain acceptable
results. While the random response calculation part of the code itself
performed satisfactorily when compared to STARDYNE, the automatic frequency
band discretization part of NESSUS code appears inefficient. It took more
than an order of magnitude more CPU time (>50) to calculate the frequency
band discretization values for numerical integration than it took to
calculate the actual response. Thus, improvement to the automatic
frequency band discretization scheme is necessary and will be accomplished
in FY'89. As an alternate, the user can completely specify the frequency
discretization scheme and override the automatic algorithm. The advantage
of the automatic algorithm is that the user does not have to know the
location of deterministic as well as perturbed structure resonance
frequencies to obtain an accurate response calculation.

Next, the stress resultant values between NESSUS and STARDYNE are compared.
It must be noted that NESSUS does not calculate stresses for beam elements.
In its current state of development, it only outputs and stores only stress
resultants (beam end moments, shear forces, and axial forces) in the
perturbation database. It must also be mentioned that for shell elements,
both stress resultants and stresses in layers are stored in the
perturbation database. Further experience with NESSUS TYPE 98 two noded
isoparametric beam has shown that appropriate choice of Loubniac parameter
used to calculate nodal stresses is highly important. Use of trapezoidal
rule for nodal stress recovery is imperative to obtain accurate nodal
stress resultants. Use of other options can result in very inaccurate
stress resultants for general stress gradients.

R.M.S. stress resultants for a typical node are compared in Table 8.19.

The axial and torsional stress resultants are directly comparable between
the two programs. However, the shear and end moments are affected by the
orientation of the transverse local beam axis. While the orientation of
local axes are close between the two models, they are nevertheless,
slightly different and cannot directly be compared. In general, STARDYNE
stress resultant results for the same node are lower. This can be
explained as the cubic displacement function finite element used in
STARDYNE is more flexible than the linear isoparametric beam element used
in NESSUS. Further comparisons between NESSUS and STARDYNE stress
resultant results are made in Table 8.20. 1In this case, the magnitude of
the maximum R.M.S. stress resultant and its location are compared between
the two codes for all the six spectral cases. The results are in very good
agreement. In some instance in Table 8.19, the maximum stress resultants
for NESSUS model occur at a node within the elbow approximated using linear
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elements. For such cases, there was no corresponding node in STARDYNE
model. The physical location of the maximum stressed nodes between the two
codes can be seen in Figure 8.35.

To obtain an overall general comparison of the results between the two
codes, fringe plots for torsional and axial stress resultants are shown in
Figures 8.36 through 8.43 for power spectral case 1 and power spectral case
6. There is overall agreement between NESSUS and STARDYNE results. The
NESSUS result for axial and torsional stress resultants for spectral case 2
through 5 are also shown in Figures 8.44 through Figure 8.51.

In summary, NESSUS random vibration analysis capabilities have been tested
and verified using high pressure duct verification model. The results are
in agreement with STARDYNE results for both R.M.S. displacements and R.M.S.
stress resultants. Where analytical results exist for a simple case, such
as documented in Section 8.5, the NESSUS results agree with analytical
results. The nodal velocities and accelerations were not compared and
verified as they are neither output nor stored in the perturbation data
base. '

The probabilistic structural analysis of duct verification efforts will
continue in FY’'89. The verification efforts will focus on a few critical
system parameters as random variables such as damping and more emphasis
will be placed on the treatment of load variations. The load random
variables considered will include harmonic load amplitude and frequency
variation and variations in the power level of PSD (area under PSD). The
random variables that affect the shape of the acceleration P.S.D. diagrams
are less well characterized. The output from probabilistic harmonic
analysis and uncertain random vibration analysis would consist of
characterization of R.M.S. stress resultants (cumulative distribution
function) and characterization of stress velocity (cumulative distribution
function). With the above two quantities expected value of fatigue life
and its coefficient of variation can be calculated.

8.8 Enhancements to Post-Processing Interface to NESSUS

Additional enhancements to post processing interface between NESSUS and
PATRAN was completed and is now being tested. The enhancements include
translation of new items such as modal stresses and modal strains to PATRAN
neutral results file. Additional capabilities were further added to
translate spectral data to PATRAN neutral results file. The data includes
displacements, stresses and strains. Additional options for obtaining
combinations of spectral cases were added to the code. Code has built in
logic to vector sum the real and imaginary parts of harmonic cases and then
add to the mean square values for random excitation cases with user defined
factors for each case to obtain R.S.S. values. The graphical presentation
of the results reported in the verification studies were post-processed in
PATRAN using this interface.
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8.9 Fiscal Year 1989 Effort

NESSUS verification efforts on high pressure oxidizer duct will continue.
Random vibration analysis with probabilistic system parameters will be
defined and a distribution of selected R.M.S. stress resultants and stress
velocities at some critical locations will be reported. Then the total
pover contained in a PSD will be considered as additional random variables
with realistic variations based on experimental data. Strategy for multiple
random variables that affect the shape of the PSD will also be developed
and verified. Verification efforts on LOX post and transfer ducts will be
conducted. LOX post analysis will address probabilistic material nonlinear
analysis. Transfer duct analysis will address probabilistic material and
geometric nonlinear analysis.
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9.0 PROBABILISTIC APPROXIMATE ANALYSIS METHODS (PAAM)
9.1 The Concept of an Approximate Method
9.1.1 Motivation

The most common structural analysis techniques in use today are finite
element and boundary element methods, and these are both represented in
the PSAM software. These techniques permit highly accurate
three-dimensional modeling of structural geometry, thermal and
mechanical load environment, and material properties. Both linear and
nonlinear system response can often be estimated within a few percent of
the actual experimental behavior. Unfortunately, these techniques can
also be expensive and time-consuming. Particularly in the early stages
of design, when geometries, loads, and materials are only tentative, it
is not practical to assemble an exact, comprehensive three-dimensional
model for every critical component. What is needed, typically, is some
means of estimating the nature and rough magnitude of maximum stresses
or displacements, natural frequencies, etc. Of further value is the
identification of which design parameters exert the most influence on
the total system performance, so that further design evolution is most
efficient.

These needs are addressed in the PSAM software by the Probabilistic
Approximate Analysis Methods (PAAM) module. The basic idea of PAAM is
simple: make an approximate calculation of system response, including
calculation of the associated probabilistic distributions, with minimal
computation time and cost, based on a simplified representation of the
geometry, loads, and material. The deterministic solution resulting
should give a reasonable and realistic description of
performance-limiting system responses, although some error will be
fnevitable. If the simple model has correctly captured the basic
mechanics of the system, however, including the proper functional
dependence of stress, frequency, etc. on design parameters, then the
response sensitivities calculated may be of significantly higher
accuracy. In other words, the calculated probabilistic distribution of
the response variable may be in significant error only by some offset of
the mean value.

9.1.2 Approach

Three factors make up the "approximate” analysis approach. The first is
a simplified representation of the part geometry. Complex
three-dimensional shapes are replaced wherever possible by equivalent
structures which are simple plates, shells, beams, or pipes with
relatively few descriptive parameters. The second factor is a similar
simplification of the applied mechanical and thermal loads. Point
loads, uniform fields, and linear or parabolic distributions are used to
describe these quantities. Often a more complex load environment can be
approximated through linear superposition of the simple descriptors.
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The third factor in the PAAM methodology is the solution technique
itself. Complex_variational techniques with many degrees of freedom are
replaced by simpler computational schemes. In some cases, it is
possible to construct a simple mechanics-of-materials model, often in
two dimensions. In other cases, more sophisticated closed form
solutions can be derived or (preferably) adapted from previous research
results in the literature. These may be based on elasticity or may
employ approximate energy methods. Yet another analysis technique which
meets the requirements for speed and efficiency is to assemble a crude
finite element solution, based on the simplified geometry and utilizing
few degrees of freedom. This type of FEM model would actually be
transparent to the PAAM user in that the simple mesh and boundary
conditions required would be generated automatically.

9.2 Fast Probability Integration Interface

The probabilistic analysis is performed by invoking one of the options in
the FPI module. The FPI module has a full-distributional analysis
capability in which the input random variables are defined using
probability distributions. The computed probabilistic structural responses
are represented by cumulative distribution functions (CDF's). The CDF for
each response is computed at a number of user-selected response values or
cumulative probabilities. For each response value or probability, it is
assumed that a most probable point (or design point) exists in a joint,
standardized, normal probability space. An iteration process involving
linear response-surface (or limit state) approximations and normal-tail
approximations is performed to determine the design point using the
Rackwitz-Fiessler algorithm {1]. The CDF for each associated design point
is then computed using an effective reliability analysis algorithm which
takes into account the effect of non-linear response surface [2]. The
closed form or simple numerical approximate solutions to particular
structural analysis problems reside in independent user-written
subroutines. FPI establishes linear or quadratic polynomial approximations
to the limit state using a finite difference (central difference) scheme on
the subroutines. Further information on the FPI algorithm has been
published in previous PSAM Annual Reports.

The PAAM software package is essentially an integration of the standard
off-the-shelf FPI program with the component-specific closed-form or simple
numerical response functions. The standard FPI code was enhanced to
perform reliability analysis on any user written response function. There
is complete compatibility between FPI and PAAM. Additions to FPI are
quickly integrated into the PAAM code. All of the FPI options such as
selecting response levels or probability levels, Monte Carlo options, etc.,
are available in PAAM.

9.3 Formulations for Demonstration Components

The PSAM code is being demonstrated and validated by considering four
representative critical components in the current Space Shuttle Main Engine
(SSME). The same four components are considered in the PAAM code, which by
its very nature is component-specific. It should be noted, however, that
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the architecture of the PAAM software permits new closed-form expressions
for these or other components to be quickly jnstalled and evaluated,
including all probabilistic considerations.

The four components permit a wide range of "approximate” solution
strategies to be demonstrated. Two of the components, the LOX post and the
transfer duct, are addressed with closed-form expressions based on
mechanics-of -materials models or more complex analytical formulations
adapted from the literature. The other two components, the turbine blade
and the high pressure oxidizer duct, are treated with a simplified finite
element-based solution.

9.3.1 Closed Form Solutions

The LOX post is part of the injector which introduces and meters the
propellent flow to the combustion chamber after atomization and mixing.
A diagram of the actual part is given in Figure 9.1, along with the PAAM
simplified representation of the post. The post is modeled first as a
beam with hollow circular cross-section. The end conditions are fully
fixed at the inlet (top) end and elastically restrained at the outlet
(bottom) end. The effective end stiffness there is represented by a
rotational spring with some finite, non-zero stiffness. A thick-walled
cylinder model is also used. Important loadings are internal and
external pressures and temperatures, and transverse distributed loads
due to fluid drag. The analysis must consider not only static stresses
but also free and forced vibration due to transverse fluid flow and the
possibility of buckling due to constrained axial thermal expansion.
Complete details of the approximate solutions are given in Appendix D,
Cases 2A.S (static solution, thick-walled cylinder model), 2B.S (static
solution, beam model), and 2.V (vibration solution, beam model).

The vibration analysis of the LOX post provides good examples of
solution strategies. The basic solution for free vibration of
fixed-fixed and fixed-pinned uniform beams is available in handbooks
{3]. Both natural frequencies and mode shapes are given in closed form
in terms of geometry and material parameters and a frequency factor, X,
which to a first approximation is a simple function of the mode number
and the bounding end condition. Solutions for intermediate end
conditions (elastically restrained ends) are available in tabular form
for a limited number of spring stiffnesses [4]. These results can be
fitted with a simple empirical relationship to calculate A for any mode
number and any end condition. The possible effects of axial load or
beam taper on natural frequencies can also be estimated from previously
published expressions. The forced vibration solution follows with
little additional difficulty. Assuming, for example, a harmonic
transverse point load at some location along the beam, the response at
any other point can be determined with knowledge of the receptance
function [5). This calculation results in a series which is dominated
by the terms corresponding to the two nearest natural frequencies.
Maximum outer fiber bending stresses are easily calculated by proper
differentiation of the displacement expression. Additional terms can be
added to include the effects of structural damping. Finally, it is no
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more difficult to analyze random vibration from the same expressions
written in terms of spectral densities and transfer functions. Multiple
random loadings can be considered and require as additional input only
the cross-spectral densities.

The transfer duct routes hot gases from the high pressure preburner
turbines to the main injector torus manifold, where it is directed into
the hot gas cavity of the main injector. A diagram of a typical duct is
given in Figure 9.2, accompanied by a schematic of the PAAM simplified
representation. The duct is modeled as a thin circular cylindrical
shell with radius equal to the average radius of the actual conical
shape. Stresses arise from a net external pressure and thermal
gradients. Buckling {s a failure mode of special concern. A general
formulation is available for the calculation of natural frequencies, but
only axisymmetric modes are considered for harmonic and random forced
vibration caused by fluctuations in internal pressure. Full details of
the models and equations are given in Appendix D, Cases 3.S (static) and
3.V (vibratory).

9.3.2 Simplified Finite Element Solutions

In some cases, development of a "simple" closed-form solution for a
simplified load/geometry case {s itself a complicated and tedious
problem. An alternative approach is to develop a simplified finite
element model. This is in no way comparable with the complex finite
element models employed in the PFEM task. The PAAM FEM represents a
highly simplified geometry with a limited number of elements. The model
jtself is actually transparent to the user. He only supplies dimensions
of the part within specified geometrical comstraints, and the code
automatically generates the required simple mesh. Loads are similarly
simple, and load inputs to the FEM are automatically generated from user
description. Execution time is short.

Some preliminary work has been done to plan and assemble such models for
two of the demonstration components, the turbine blade and the high
pressure oxidizer duct (HPOD). The models will be constructed with the
NESSUS/FEM software developed for the PSAM project.

The turbine blade will be modeled with two-dimensional plate elements
allowing for limited variations in curvature, tilt, lean, twist,
thickness, and width. Geometric parameters will typically be specified
by the user for a limited number of points around the perimeter of the
plate (e.g., the four corners), and the complete geometry will then be
generated by linear or quadratic interpolation across the face. A
similar scheme will be used for specification of the pressure loads and
temperatures. The shroud will be modeled as a lumped mass and the
platform as a variable stiffness. The effects of centrifugal loading
will be considered.
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The HPOD will be modeled with an assembly of a limited number of beam
elements with hollow cross-section. All calculations will be based on
thin-wall theory. Ovalization effects in the elbows will be
incorporated with empirical adjustments to the calculated stresses based
on ANSI/ASME flexibility factors. Static loads to be considered include
internal pressures, flow momentum, vehicle acceleration, and
temperatures. Dynamic loads include periodic and random base excitation
and periodic and random pressure fluctuation.

9.4 Validation

A validation problem of the LOX Post thick cylinder model has been
performed using realistic input data. An advanced first order and Monte
Carlo analysis of the closed form solution were both performed.

The variable inputs for the LOX Post thick cylinder model are listed in
Table 9.1.

Table 9.1

Definition of Random/Deterministic Variables

Variables Distribution Mean cov
Inner Radius (Rj) truncated Normal 0.94 in. 1.06%
(+0.03)

Outer Radius (Ry) truncated Normal 1.10 in. 4.55%

(-0.002, +0.01)

Young's Modulus(E) Normal 3.40E+7 psi 2%

Poisson’s Ratio Normal .3594 2%

Coefficient of Thermal

Expansion Normal 5.65E-6 /R 5%

Internal Pressure(Pj) Lognormal 3077 psi 4%

External Pressure(Py) Lognormal 3232 psi 4%

Internal Temperature(Tji) Lognormal 194 R 1.55%
(3 R)

External Temperature(To) Lognormal 1444 R 1.55%
(15 R)

Reference Temperature(Tref) N/A 530 R 0%

Notes: All mean value data was obtained from the First Annual PSAM Report
and Rocketdyne. The truncated normal limits for Rj and Ro along with the
mean temperatures and COV of Tj and T, were provided by Rocketdyne. Other
statistical data such as distribution types and COV for the other random
variables were determined from default values provided by Dr. Paul
Wirsching and are not problem specific (see Table 9.3).
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The input data for PAAM is identical to that for FPI with the exception
that additional data is sometimes needed. This need is accommodated by
adding the necessary response data after the model data. The keyword
*RESPONSE indicates response data is being provided. In PAAM, the first
data is the response function desired (i.e. LOX post thick cylinder, LOX
post tapered beam, turbine blade, etc.). In the LOX Post thick cylinder
example the response function is "2AS". The second data is a set of five
integers. The third data is a set of five reals. This information can be
used in any way desired by the user written subroutines. Additional
information can be entered in any format as long as the user written
routine reads the data properly. For the LOX Post thick cylinder example
the first integer indicates the response type (i.e. hoop stress, radial
stress or axial stress). The second integer indicates whether end
constraints are imposed ( 11 - yes, 12 - no). The first real indicates the
radial position of the desired response (0.0 = Rj, 1.0 = Ry).

The input file for an advanced mean value solution of the LOX Post thick
cylinder model is listed in Table 9.2. The desired response is the hoop
stress at the inner radius without end constraints.

Table 9.2
PAAM Input File for LOX Post Thick Cylinder Model

*FPI

THICK CYLINDER MODEL (2AS) - USER DEFINED HOOP STRESS

*RVNUM 10

*GFUNCTION 6

*DATASETNM

*METHOD

*PRINTOPT

*ANALTYP

*END

*DEFRANVR

RI

0.9400000E+00 0.1000000E-01 0.1000000E+02
0.91 0.97

RO

0.1100000E+01 0.3300000E-02 0.1000000E+02
1.098 1.11

O OO

E

0.3403200E+08 0.6806400E+06 0.2000000E+01
XNU

0.359375 0.00719 0.2000000E+01
ALPH

0.5650000E-05 0.2830000E-06 0.2000000E+01
PI

0.3077000E+04 0.1230000E+03 0.4000000E+01
PO

0.3232000E+04 0.1292800E+03 0.4000000E+01
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TI
0.1940000E+03 0.3000000E+01 0.4000000E+01

TO

0.1444000E+04 0.1500000E+02 0.4000000E+01
TREF

0.5300000E+03 0.0000000E+00 0.2000000E+01
*END
*RESPONSE
C LOX POST THICK CYLINDER MODEL

2AS

1 11 0 0 0
0.00000 0.00000 0.00000 0.00000 0.00000

*END

The results of the LOX post FPI and Monte Carlo analyses for hoop stress at
the inner and outer radii are shown in Figures 9.3 and 9.4. The agreement
between FPI and Monte Carlo is excellent for the closed form model.
However, the hoop stress values clearly indicate that yielding will take
place. A nonlinear model would be required to model this behavior
correctly.

Figure 9.5 shows the sensitivity factors of the random variables for the
hoop stress at Ri. The coefficient of thermal expansion clearly dominates.
The internal and external radii are insignificant due to their tight
tolerances. It should be pointed out that the COV used for the thermal
coefficient (ALPHA), elastic modulus (E), Poisson's ratio (XNU), internal
and external pressure (Pj and Po) were chosen from default values given by
Dr. Paul Wirsching (Table 9.3). This statistical data is suggested to be
used when problem-specific data is not available. Use of improved
statistical data may significantly alter the results. Special attention
should be given in FY'89 to jdentification of more specific information
about statistical distributions of input variables to the PAAM models.
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Table 9.3
Default Distributions and COV for NESSUS Random Variables

o]
(=]
<

DISTRIBUTION

bﬂﬁﬂmE

Normal 0.02
Normal 0.02
Normal 0.02
Normal 0.02
Normal 0.05
Yield stress Weibull 0.07
Coordinates Normal 0.005
Thickness Normal 0.005
Temperature Lognormal 0.05
Pressure Lognormal 0.04
Forces Lognormal 0.02
Cross-sectional area Normal 0.007
Inertia Lognormal 0.02
Torsional constant Lognormal 0.01
Springs Lognormal 0.02
Blade angle - x,y,z Normal stdev = 0.1°
Material orientation Normal
Other Lognormal
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LOX POST (THICK CYLINDER)
PROBABILITY vs. HOOP STRESS(R=RI)
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LOX POST (THICK CYLINDER)
PROBABILITY vs. HOOP STRESS(R=R0)
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9.5 Future Work

Efforts in FY’'89 will be focused on completing the development, coding, and
validation of the simple linear models for all demonstration components. A
majority of this work will involve the transparent FEM models for the
turbine blade and HPOD.

Validation efforts will be extended by comparing PAAM results with
NESSUS/FEM results for the PAAM models based on closed form expressions. A
selected number of NESSUS finite element models corresponding to the
simplified geometry and simplified loads of a PAAM model will be analyzed
as validations of the PAAM analytical expressions and assumptions. Where
possible, the PAAM results will also be compared to the NESSUS/FEM
validation models which are based on more exact, complex representations of
geometries and loads. This will provide some evaluation of the suitability
of the geometry/load simplifications. This comparison will also permit
some overall evaluation of the PAAM scheme relative to the conventional
PSAM FEM scheme.
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As funding permits, attention will be given to the development and
validation of a select number of nonlinear models in order to demonstrate
this general capability in the PAAM scheme.

9.6
(1]

(2]

(3]

[4]

(5]
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10.0 STOCHASTIC THERMOVISCOPLASTICITY
10.1 Introduction

The constitutive theory of thermoviscoplasticity is extremely general in
nature [1], and is capable of describing a very wide variety of material
behaviors, ranging from linearly viscous fluids to rate independent
elastoplastic solids. Most thermoviscoplastic (TVP) theories or material
models, though, are phenomenological, with a feature of such models being
their dependence on phenomenological parameters that serve to describe
gross material characteristics such as hardening, softening, and
hysteresis. These parameters usually are not directly related to the
actual physical properties of the material that give rise to its gross
behavioral characteristics. Thus, these models correlate a material’s TVP
behavior, but provide little or no insight into the active mechanisms that
may be controlling the TVP behavior.

The purpose of the stochastic TVP material modeling effort within the PSAM
project is to provide a sound basis for structural reliability modeling
when stochastic TVP material behavior is to be included. The effort has
been along two fronts. First, owing to the history (or path) dependent
nature of TVP materials, and of phenomenological TVP material models that
are typically used in calculations of structural response, a reasonable
algorithm that preserves this path dependence has been proposed for
calculating the evolution of the statistics of the TVP structure’s
response. An important aspect of this problem is that the structure'’s
response statistics are directly related to the statistics of its
material’s initial state. Consequently, the second part consists of
describing the initial material state in terms of physical, or rprimitive”,
material properties that are readily observable (such as grain sizes and
shapes, dislocation density, etc.) and whose statistical characteristics
are more readily estimated. Calculations of probabilistic TVP material
response using such "primitive", or mechanistic, constitutive models will
yield insight into how the statistics of a phenomenological model’s
parameters are affected by the statistics of the readily observed
“primitive" material variables.

10.2 Random Fields

The stochastic parameters of the probabilistic structural analysis problem
may be split into two categories: the first being uncertainties in initial
conditions; the second, uncertainties in external loading histories. The
first category may contain uncertainties in initial material properties and
uncertainties in the structure's initial geometry. In the most general
case for random material behavior, the uncertainties in the initial
material properties are described by random fields of these properties
which initially span the structure. A random field is a function of
three-dimensional space that possesses uncertainty of the parameters of the
function, over the three-dimensional space [2].
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The theory of random fields is fairly complex, but in practicality a finite
element mesh is used to model the random field. Hence, the random fields
can be reduced, as in the reference above, to sets of discrete, but
correlated, random variables. To define the stochastic modeling problem,
the uncertainties in the material properties need to be specified
statistically. This is done by prescribing, as an initial condition, the
joint probability density function (PDF) of these sets of (space-discrete)
random material variables.

The second category of probabilistic variables may be introduced by
prescribing uncertainties in the external loading history. 1In this case,
the loading is a random function of time. Unlike the material modeling
evolution, the stochastic nature of the loading can change at any time
(e.g. random process). Similarly to before, the time axis can be
discretized so that the loading history is prescribed through a set of
discrete, correlated random variables with a specified joint PDF.

10.3 Probabilistic Evolution of TVP Behavior

It is taken as a basic tenant that, when a real TVP material is subject to a
known loading history, its deformation mechanisms obey the laws of classical
physics in a deterministic way, i.e., knowing its current history dependent
microstructural state, and its current loading, the material "knows what to
do,” and it does not deform by means of a random process. If the constitutive
model was to be a random process, then this behavior would be akin to having
the material characteristics, at a material point, change without the
influence of any thermodynamic force. This is equivalent to saying that the
current behavior is not related to a physical set of initial conditions, and
therefore, this violates an engineering sensibility for material behavior.

In short, for a real TVP material (of known geometry subject to a known
loading history), the randomness of its initial state, or its microstructural
primitive variables, is the sole source of its randomness at later times.
Stochastic TVP material models should also exhibit this characteristic. So, a
stochastic TVP material is one whose initial material state is random, but
which for a known initial geometry and a known loading history, responds
deterministically in an evolutionary or path dependent sense (given a realized
set of initial material parameters).

The geometry of the structure is another probabilistic initial value problem.
If one were to allow the structural geometry to change in an incrementally
stochastic way during some known loading history, then once again, there seems
to be no guarantee that a realizable initial structure exists that would
evolve in a deterministic way, under any realizable loading history, to reach
such a "non-deterministically changed" geometric state.

These concepts lead one to define a stochastic TVP structure as one whose
initial material state and whose initial geometric configuration are random,
but which under a known loading history, given a realized set of initial
material and geometric parameters, responds deterministically in an
evolutionary or path dependent sense.

195



10.3.1 Proposed Solution Algorithm

10.3.1.1. Overview

First, define r=r(t) to be the response function of interest, where t is
time. The function r is some subset of a complete realization, or
analysis result. A realization is referred to herein as a physical
occurrence out of many possible occurrences. For example: r could
represent the realized deflection history at some critical location in
the TVP structure; it could represent the realized history of a stress
component at some critical location; or, in the extreme case, it could
represent the entire solution to the structural analysis.

For the moment though, consider the case where r(t) is a scalar
quantity. The probabilistic problem is then to find, given the
statistical descriptions of the uncertain (or random) input parameters,
the statistical description of r=r(t). We choose, as this description,
the response’s cumulative probability distribution function (CDF), which
will be denoted as c=c(r;t). Note that the response's CDF also evolves
with time. If r is not a scalar, for example if it is an n-vector

r=(r1,..-+In)> then ¢ is also an n-vector c=(c1,.--:Sn)> with ¢j being
the CDF of ri (i=1,...,n).
Let k=(ki,.-.,kN) represent the N discrete random parameters that

describe the probabilistic TVP structure's random initial material
and/or geometric state, and the random loading history to which it is
subject, where the joint PDF of k is known. Also, denote the dependence
of r on k as r=r(k;t). The solution procedure presented below is based
on the previously cited, fast probability integration (FP1) method of
Wu. Given r=r(k;tp) and the joint PDF of k (tgp is some fixed time), the
FPI algorithm provides an efficient and accurate method for the
calculation of e=c(r;tg). But, owing to the history dependence of the
TVP structure, the function r=r(k;tQ) is difficult (or at least
potentially very time consuming) to calculate.

During the calculation of c=c(r;tQ), the FPI code will need to evaluate
r=r(k;tg) for many different values of k. Conceptually then, for each
evaluation of r, a deterministic finite element analysis, for example,
based on the particular needed realization of k, needs to be performed
in an incremental fashion integrating from time 0 to time (.

Obviously, this is unacceptable if too many evaluations of r are needed.

A reasonable way to avoid the calculation of so many realizations is to
construct an approximate analytical form for r=r(k:;tg). The approach
taken here is quite simple and, in fact, is the same that has been
described by [3]. The idea is to pick several (say m) realizations of k
(call them kj, ij=1,...,m), and calculate out to the latest time of
interest the m deterministic TVP boundary value problems based on each
of the ki‘'s in turn. Then, at to, & polynomial is fit to the m
(ki,ri=ri(ki;t0)) points, which provides an approximate analytical form
for r=r(k;tg) that the FPI program can quickly evaluate when calculating
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c=c(r;tp). Polynomial fits made at various other (fixed) times can then
be used by the FPI program to calculate the evolution of c=c(r;t) in
time.

10.3.2 Example of Evolutionary Distributions

This example seeks to illustrate the nature of stochastic simulation of
evolutionary relationships, such as occurs for TVP material response.
The example will use pre-selected analytical response-time curves, which
is done so that the exact expression for ¢ = ¢ (r; t) can be obtained
and compared to the results of the FPI-based algorithm. The basic idea
of the algorithm is to fit approximate response functions to evolved
response-time curves at different time points, and to use the FPI
algorithm to define the CDF results at user-selected time points. It
will be seen that the algorithm is able to reproduce the exact results
with excellent agreement. It will also be seen that the statistical
nature of the answer is also evolving with time. In the next
sub-section, this FPI-based algorithm will be applied to a simulated TVP
material.

Let r be taken as a scalar (i.e., r=(r1) and c=(c1)) and let N=1 (i.e.,
there is only one random variable, k=(k1)). For simplicity, denote (r1)
as r, (c1) as ¢, and (k1) as k. The PDF taken for k is

p(k)=-6k(k-1), O<k<l. (10.1)

Now choose, for example, five different k values (m=5) to span the range
of interest, i.e., k=0.005, 0.250, 0.500, 0.750 and 0.995, and for each
of these, say that a TVP boundary value problem was calculated out to a
time of t=4 via incremental finite element analysis, which yielded the
five traces of r vs t shown in the figure below.

“ e

)

10

0.0 T T T —
0.0 10 2.0 10 40

Figure 10.1(a). Realizations of Response vs. Time
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The traces .shown in the figure are actually plots of the response-time
curve -

s (10.2)

but, in general, the exact analytical form for these curves would not be
known and is used here only for the sake of demonstration. Next, at
some time of interest t=tp, the five (k,r) points are used to define a

fourth order polynomial, i.e.,
(10.3)

r-a°+a,k+a2kz+a3k3+a,kﬂ

as the needed approximate analytical form for r=r(k;tg). For example,
at tg=2 one obtains,

a,= 1.0000008300 a, = 0.6929735040 a,=0.2416176960 (10.4)

a,=0.0517377946 a,=0.0136692352:;

and at tQ=4,
a,=1.000036140 a,=1.378772670 a,=1.020423210 (10.5)

a, = 0.286825095 a,=0.31389737S.

The three equations above were used by the FPI program to obtain the
CDF’s c(r;2) and c(r;4) as indicated, respectively, by the +'s and
squares in the figure below; the solid and dashed curves in the figure
are the exact analytical solutions described above. As can be seen,
this approach works quite well.

1.0 5T e
p .Q
e
5 -
0.8 -
] ,u"
0.6 3 g
O ]
0.4 ——— 1,220
[ °=4.0
0.2+
0.0 T T 1 T 1
0.5 25 30 35 40 45

Figure 10.1(b). Calculated CDF at Two Time Levels
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If r is a scalar and k=(kj,k3), then polynomial fits at various times
could be made to, e.g.,

r=bo+bk, +b,k,+b,kZ+b k k,+bkl. (10.6)

a procedure which would require that six realizations be obtained.
Obviously, if there are many random variables, or if polynomial fits of
high order are required, then the amount of computation can become
excessive.

For TVP boundary value problems though, a solution procedure that would
reduce the amount of computation is nmot readily evident, since, e.g.,
the perturbation technique of [4] does not appear to have an obvious
extension to this case of history dependence. If one were to imagine
the existence of a procedure that did allow for the calculation of only
a few (or, ideally, one) realizations, then the FPI program would not
have enough information to perform the evaluations of r=r(k;tq).
Consequently, if the perturbation technique was applied to obtain this
additionally required information by using, at tg, one of the
realizations as a base from which to perturb, then this would be
equivalent to having the material deform by a random process. As was
previously discussed, this is an unacceptable situation. Additional
research is needed if a solution procedure more efficient than the one
presented above is to be found.

Finally, it should be noted that perturbation techniques can be used for
history insensitive nonlinear problems (such as the finite elasticity of
a perfect rubber band), since it is irrelevant by what path one arrives
at the current state. In such a case, a sensible algorithm would be to
track a single realization r=r(k:;t), e.g., the one corresponding to the
mean value of k. Then, at some t( where c=c(r;tg) is desired, the
r-solution obtained from the mean value of k could be used as a base
from which to iterate (e.g., using the equations of finite elasticity)
toward and to any new r-r(k;t() that the FPI program may require.

10.3.3 Probabilistic TVP Tension Test

As an example of probabilistic TVP material modeling, the above
procedure is applied to a high-temperature (or creep) tension test. The
creep model used is based on the mechanism of grain boundary sliding
with grain boundary diffusional accommodation, and is similar in spirit
to the model of [5].

The polycrystalline material is idealized as being a two-dimensional
array of hexogonal grains, as depicted in Part (a) of the figure below,
with the grain‘’s current size and shape being defined by the lengths and
d and I. As indicated in the figure, the assemblage is subjected to an
overall tensile true stress o, with the other overall in-plane stress
components being zero. Under such a loading, the deformation is assumed
to occur by grain boundary sliding in the mode shown by Part (b) of the
figure, where the left and right grains are being "pulled in" by the
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wyoid" on the grain boundary BE. 1In this state, the grain boundaries
AB, BC, DE and EF have (local) compressive stresses acting normally
across them, and the grain boundary BE has a tensile normal stress
acting across it.

The local normal stresses lead to diffusional mass flux along the grain
boundaries in the senses indicated by the arrowvs, and this removes mass
from along the four oblique grain boundaries and deposits it in the
"yoid" of grain boundary BE. In this way, the deformation is
diffusionally accommodated.

e e
Q Nia

Figure 10.2(a). Idealized Two-Dimensional Microstructure

Figure 10.2(b). Grain Boundary Sliding Deformation Mode
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In a method similar to that of [5], the grain boundary mass flux is
taken proportional to do¢,/dS (where o, is the normal stress acting
across the grain boundary, and § is the distance along the grain
boundary). This, coupled with mass conservation allows one to find, for
a given overall inelastic strain rate, €), the corresponding
distribution of o, along the grain boundaries. Force equilibrium
applied to certain grain cross-sections, along with the assumption that
the grain boundaries support no shear stress, then provides the
corresponding value of o,.

The procedure [6] yields, for this orthotropic deformation mode, the
simple flow rule

. . ) ) (10.7)
6.232;4_\/5[)02 €\ =-¢} €,=0,
df(A)

where €] (1=1,2,3) are the three inelastic logarithmic strain rates along

each of the coordinate axes (there are no shear strains), d is the
current grain width as indicated in the above figure, and D is a
diffusion coefficient (to be defined below). The function f(4) is

f(A)-A’(Liz){LﬁE(A-l) 1+—1——} a-2L (10.8)
4 442/ 4%2 8 A 342 J3d

where A is the current grain aspect ratio (A = 1 corresponds to the
grains being regular hexagons). 1In the previous two equations, the
current size and shape of the grains are determined from the simple
evolution equations

- ) . . . ) . 10.9
l=le, d=de,, with € =€ +€ ( )
where €, and €f (i=1,2,3) are, respectively, the total and elastic

logarithmic strain rates. The diffusion coefficient D is given by

5. Ds00 (10.10)

BT

Db-Dgexp(-S—;) R=N, B,

where B is Boltzmann's constant, T is absolute temperature, and Ngy is
Avogadro’s number. The grain boundary thickness 6 is assumed to remain
constant with time, as are the constants 2 (the molecular volume), D¢

(the limiting grain boundary diffusivity) and @, (the grain boundary
diffusion activation energy).
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The flow rule is implemented as follows. First the elasticity is taken
as isotropic, i.e.,

A+ 2u A A (10.11)
c,~l » A+2p A o,=C,€}

A A A+2p

where g and A are, respectively, the shear modulus and Lamé constant, g,
(i=-1,2,3) are the true normal stress rates along each of the coordinate
directions (there are no shear stresses), and where the summation
convention is used. Next, combining the last of the above two
equations, the rate constitutive law is written as

6,=Cy€,~ Y with Y, = C,¢€) (10.12)
Now, a uniaxial tension test with a prescribed tensile strain rate is

modeled by prescribing the two-dimensional model’s effective strain rate
€¢;. Thus, the conditions

. . . 2 ., . (10.13)
6,=0 €,=0 € S(ef*eg)-prescribed rate

are used when eqn. (10.8) is integrated through time to obtain the
two-dimensional model’s stress-strain history. Finally, from this
history, the effective (or uniaxial) strain € vs effective (or
uniaxial) stress

oE-Jog-azo,+c§ (10.14)

curve is obtained.

The discrete points in the figure below show two experimental uniaxial
stress-strain curves for B1900+Hf, a Ni-based superalloy, pulled at a
constant strain rate of 8.3 x 10-5 sec-l {7]. The continuous curves in
the figure are the model results, also for €= 8.3 x 10 -5 sec-l. The
grain size of this material was quoted as 75 um, and this was
incorporated into the model by setting 1 = 75 pm and A = 1 as initial
conditions. "Handbook" values for Ni [8] were used for 6D) (= 3.5 x
10-15 m3/sec) and 02 (= 1.09 x 10-29 m3), and Qp = 72.5 kJ/mole was also
used. Reference [8] quotes Qp = 115 kJ/mole for Ni. At T = 1144K, the
elasticity was specified as E = 165 GPa (Young's modulus) and
v=A/(A+u)/2=0.48 (Poisson’s ratio), and at T=1255K the specification
was E=150 GPa and v=0.48. As is seen, the model can be made to fit the
experimental data reasonably well with reasonable values of the material
constants, especially at the higher temperature.
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Figure 10.3. Comparison of Creep Model with Experimental
Uniaxial Stress-Strain Data

In the current probabilistic problem, both the deformation and the
material properties of the temsile bar are taken as being uniform with
respect to space. The T=1255K case is considered, and all of the
constants are as above, except that now E and Qp are random, i.e.,

_n(BA+2u) (10.15)

E==S =k Qs=k,.

Also, the effective stress is taken as the response, i.e., g¢=r.

The variables E and Qp are assumed to be statistically independent, and
each has a truncated normal distribution as its PDF. The mean value of
E, i.e., u(£), is chosen as 150 GPa, and u(Q,) is chosen as 72.5 kJ/mole.
The standard deviations for the problem are o(£)= 10 GPa and o(Q,)= 0.5

kJ/mole. The cut-off values for both of these PDF's are taken to occur
at plus and minus three standard deviations from the mean.

In order to construct accurate representations of r = r(k; tg), 25
separate realizations were calculated, each corresponding to one of the
possible combinations of £ = 120.5, 135.0, 150.0, 165.0 and 179.5 GPa,
and Qp = 71.05, 71.75, 72.50, 73.25 and 73.95 kJ/mole. The 25 resulting
stress-strain curves are shown in the next figure, and at each of the
three different time levels shown, i.e., tg = 10.0 sec (e, = 8.3 x
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10-4), 67.5 sec (eg = 5.6025 x 10-3) and 300. sec (e¢— 2.49 X 10-2), the
25 (k, r) points were fit to a fourth order, two-dimensional Lagrangian
polynomial, i.e., a polynomial whose individual terms are
1 k, k2 k3 k3 (10.16)
kZ klkZ ksz k::kz k:kz
k2 k,k2 K2k: k(K klk.
K3 kky K3k3 kIk: kK3
ki k,k Kik3 K1k kik;

"0

6.0
? 10.0 sec 675 sec 300.0 sec
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Figure 10.4. Stress-Strain Realizations for the
Probabilistic Creep Problem

The three resulting polynomials were then used by the FPI program to
obtain the CDF’'s c(0g; 10.0 sec), c(agg 67.5 sec), and c(0g; 300.0 sec),
which are shown in the following figures. The probability levels of ¢
are expressed in terms of the standard normal unit u, i.e.,

| L) . 5c- (o) (10.17)
c > 291’ \/5 w1l u O(OE)

where "erf" is the error function (a normal distribution plots as a
straight line on such a graph). As is seen, the character of the
distribution changes in time: at tQ = 10.0 and 300.0 sec, fairly high
curvatures are exhibited in the distributions’ tails, while at £g = 67.5
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sec the curvature is less pronounced. This is due to the fact that, at
tg = 10.0 sec, E is dominant (i.e., 30;/3Q,~0) and at t,=300.0 sec Q, is
dominant (d0,/9£~0), while at tg = 67.5 sec neither dominates.

— e T — —
900 950 1000 1050 100 50 1200 1250 130.0
O¢ [ MPa ]

T

Figure 10.5(a). Calculated CDF for the Creep Problem at 10.0 sec
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Figure 10.5(b). Calculated CDF for the Creep Problem at 67.5 sec
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Figure 10.5(c). Calculated CDF for the Creep Problem at 300.0 sec
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_THE MOST PROBABLE POINT LOCUS METHOD FOR CONSTRUCTING THE

PROBABILITY DISTRIBUTION OF A RESPONSE VARIABLE

SUMMARY

The most probable point locus method (MPPL) is an iterative process to
compute the CDF of a response variable (i.e., a function of several random
variables). It was shown that the MPPL CDF converges tO the exact after one
iteration in five examples of non-linear response functions and non-normal
variates. This is ''good news' when the fesponse function is implicit because
the number of costly function evaluations required by MPPL is limited relative

to other methods for constructing CDF's.

THE MOST PROBABLE POINT LOCUS (MPPL) ALGORITHM
Consider a response function

z =2

where % is a vector of n random design factors. Z can be either explicit
or implicit. Determine the CDF of Z, denoted as FZ. If 2 is an explicit
function of %, then the construction of FZ is straightforward using Monte
Carlo or fast probability integration. All numerical reliability methods
require many (100 to 10,000) function evaluations, a very fast operation
with a digital computer if Z is an explicit function of %.
However, when Z is an implicit function (e.g., Z(%) defined only

through a finite element code) a single function evaluation may be costly.

So the fundamental question is how do we construct a high quality CDF of

Z with a very minimum of function evaluations?

The most probable point locus method (MPPL) as proposed by Y. T. Wu

may be close to the optimum in requiring a pinimum number of function
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evaluations relative to the accuracy of F There is no formal proof of

7
this, but ihtuition Suggests that it would be difficult to produce a
reasonable estimate of FZ with fewer fhnéiion evaluations.

The basic MPPL scheme, an iterative process, is described in some
detail in Table 1. A plot of the CDF as constructed by four MPPL itera-
tions (moves) is shown in Fig. 1. But the key issue is the number of
function evaluations required for each move. A sumnary of the function
evaluations is shown in Table 2 for two different sets of points used to
estimate the CDF. When nine points (four points on each side of the mean)
are used to construct the CDF, it is expected that Fz would be more accur-
ate than the seven point approximation. However, experience has shown
that high quality CDF's can be constructed with the seven point system.
EXAMPLES

Attached are five examples. 1In each case the response function is
non-linear and/or some or all of the variates are non-normal. In all
cases a nine point CDF scheme was employed and the CDF curves shown in the
figures were fit by a cubic spline in the graphics program.

For each example there are four plots.

1. The CDF based on the linear approximation to the response function

(Step 5 in Table 1).

2. The CDF after the lst move. (Step 6 in Table 1).

3. The CDF after the 2nd move. (Step 9 in Table 1).

4. The CDF after the 3rd move. (Step 10 in Table 1).

The CDF of Z by the MPPL approximation is compared to the exact in

all of the figures. Upon examination of the curves, the following general

conclusions can be drawn.
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1. FZ estimated from a linear approximation to the response function is
generaily a poor approximation tO the exact.

2. The first move produces, in all cases, a "good" approximation to the
exact.

3. Little improvement is realized by the second and third moves.

These results are good news relative to the goal of limiting the
number of function evaluations required. Assuming that a seven point scheme
is used, the number of function evaluations is shown as a function of the
number of variables in Fig. 2. Clearly, computer costs for the lst move

CDF will be small relative to the 2nd and 3rd iteration. A general

(qualitative) conclusion is that the lst move CDF will be the most "efficient."
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Table 1

FLOW CHART FOR THE MOST PROBABLE POINT LOCUS PROBLEM

Input:
1. Response function, (explicit or implicit); z = Z(%)

2. Mean, std. dev. of each basic variable, Xi; i=1,2, .. .N

f

Evaluate Z at mean values u of % and at perturbed values of STEP 1
"

(u + 0.1 oi) of each Xi’ all other variables equal the means.

There are a total of N + 1 function evaluations.

9

Using results of Step 1, estimate “Z and 02 using the

STEP 2

Z

o = I(EE ’ 2
z VY A\x/ %

Derivatives evaluated from the perturbation results of Step 1.

approximate forms . . . . 1y = Z(u)
4%

y

STEP 3
Define the sample space for Z

= + i
Zj Mo JGZ
j=-4’-3,...,0’119”3’&

Note: 1In this example, the CDF will be defined
by 9 points, but the number is arbitrary

f

STEP 4
Z=a + fa X,
o) i1

Using the results from Step 1, expand

Z as linear functions about pu
n

-
Use Wu/FPI to compute: STEP 5
1. 8, for each Z,

J ]

*
2. Design point for each Zj’ denoted as Xj

THIS IS THE FIRST ESTIMATE OF THE CDF OF Z

v
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STEP 6

OVE: i
1st MOVE Improve the CDF of Z by an improved value of Zj (AMVFO)

*
at each Bj, namely the value of Zj at the design point ¥j

from Step 5.

j = '4) "3$ "2’ "la 1, 2: 3

In this example, there are eight function evaluations.

The choice is arbitrary. There could be fewer.

P
To further improve the CDF, obtain perturbed solutions STEP 7

* * *
for Z at all ¥j’ €.8., Z(X1 + .lox . XZ) for an example
of two variables. Here there will'be a total of U

function evaluations.

¥

1

Expand Z as a linear function at each ¥j STEP 8

2nd MOVE: Improve the estimate of the CDF of Z by an STEP 9

improved B at each Zj of Step 6. For each Z of Step 8
use Wu/FPI to compute,
1. B. for each Zj

3
*
2. Design point for each Zj denoted as §j

\

3rd MOVE: Improve the CDF of Z by an improved value STEP 10

of Z., at each Bj; namely the value of Zi at the design

. * *
point éj from step 9. Compute Zj = Z(%?)

j= -4, -3, =2, -1, 1, 2, 3+4

Here there are eight function evaluations.

At this point, the iteration process could be continued by repeating Steps 7
through 10. However, it is thought that there will be little improvement

in the quality of the CDF.
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Table 2. Number of Function Evaluations Required

F (2)
z

P

In this
7.

J Points at which
CDF is to be
evaluated.
example, J =

; process
I
l

N = number of random variables

Total Function Evaluations

First Estimation: Linear
performance function

Ist Move. Function evaluation at
each design point (except mean).
J-1 evaluations

2nd Move. Construct linear function
at each of the J-1 design points. At
each point, need only the perturbed
value for each of the N variables
N(J-1 evaluations)

3rd Move. Function evaluation at
each design point (except mean).
J-1 evaluations

N+1

N+]J

JIN+ 1)

J2+N)-1
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Fig.

B

1 Construction of the CDF of Z by the Iterative MPPL

= ¢’1[FZ]

FIRST ESTIMATE
STEP 5

3rd MOVE
STEP 10

2nd MOVE; STEP 9

1st MOVE; STEP 6
I

REFINED EST. OF CDF OF Z
AFTER 3 MOVES
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A STUDY ON THE PERFORMANCE OF AMVFQ

PRELIMINARY REMARKS

Growing experience by all participants in PSAM is suggesting that
accurate estimates of the COF of a response variable can be made by MPPL
with one move (AMVFO). This result is particularly useful for NESSUS
because a "high quality" CDF can be constructed with 2 minimum of function
evaluations.

The rapid convergence of MPPL was first observed by Y. T. Wu, the author
of MPPL. But now there has been extensive experience with this algorithm.

This report documents results obtained at UA.

A SUMMARY OF AMVFO EXPERIENCES AT UA

Attached are reference to 3n examples for which AMVFO solutions have
been obtained. Unique to each example are:

1) The functional form, = Z(%) where X is the vector of independent

random variables.

2) The distribution family for each X,.

3) Statistical parameters for each Xi'

For the first 18 examples, there are direct comparisons between the
AMVFO generated CDF and the exact. The exact solution is obtained by
Wu/FPI. Percent errors on g = 9'1(FZ) are presented.

For Examples 19 through 30, no specific comparisons are reported

because there was very close agreement between the two solutions.
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A CLOSER LOOK AT THOSE CASES WHERE ERRORS ARE THE LARGEST

Some additional studies were made of those cases where the apparent
errors in AMVFO were the largest, i.e., Examples 10, 15, 16, 17, and 18.
Plots of the CDF are included for each of these examples. Note that the
"exact" solution is obtained by Wu/FPI. Experience has indicated that
Wu/FPI, used for the exact solution, may have as much as a 5% error (and
sometimes a little higher). Errors in Wu/FPI could explain at least part
of the observed differences. In fact, for Examples 9 and 10, the results
of Wu/FPI differ depending on which variable is chosen as the dependent
variable in the performance function as specified in the program.

As an independent check, a Monte Carlo program (using the Harbitz
algorithm) was employed to compute point prohabilities at selected Z-values.
The results are presented for each of the five examples mentioned above.
Generally these results seem to confirm that Wu/FPI is close to the exact
solution, and that errors are introduced principally by the AMVFN process.

To pursue this issue, MPPL is executed for three moves for each of the
five examples. Percent deviations with the Monte Carlo solution are listed.
Upon review of the results, it is not clear, in general, that the 3-move MPPL

solution will always converae to the exact.

CONCLUSIONS

It is difficult to draw general conclusions from this limited study
of 30 examples. However, on the basis of this experience, AMVFO seems to
be robust. The largest errors in g = ®'](FZ) were about 10%.

It comes as no surprise that deviations between the AMVFQ and exact
CDF's are largest in the tails. Unfortunately, there does not seem that
there is anything that can be done a priori to predict the magnitude of

the error.
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It also appears that generaily additional moves (the 2nd and 3rd)
in MPPL do not consistently ana substantialiy improve the estimate of the
CDF. With the exception of special cases in the extreme tails of the

distribution there does not seem to be much value gained by continuing

beyond the AMVFO solution.

This study should continue to examine functional forms which may cause

problems.
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EXAMPLE 1 :

LIMIT STATE FUNCTION : 2 =

VARIABLE DIST. (MEAN/MED, STD/COV)

3X + 2Y + W

X-WEI(10.,1.), Y-FRE{10.,1.), W-EVD(10.,1.)

AMVFO SOLUTION

EXACT SOLUTION

Z VALUE BETA Pf BETA
45.0330 -3.400100 .336858E-03 -3.4030
48.7750 -2.665400 .384488E-02 -2.6660
52.5170 -1.897600 .288743E-01 -1.8980
56.2580 -1.029500 .151622E+00 -1.0310
63.7420 1.075000 .858813E+00 1.0760
67.7420 2.036900 -979170E+00 2.0370
71.2250 2.758100 -.997093E+00 2.7580
74.9670 3.273400 .999469E+00 3.2740
EXAMPLE 2 :
LIMIT STATE FUNCTION : Z = X
VARIABLE DIST. (MEAN/MED,STD/COV) :

X-WEI(10.,2.), Y-FRE(8.,1.)

AMVFO SOLUTION

.333303E-03

.383803E-02

.288480E-01

.151270E+00

.859036E+00

.979175E+00

.997101E+00

.999470E+00

EXACT SOLUTION

Z VALUE BETA Pf

13.4880 -4.233100 -115321E-04
28.3960 -2.957100 .155281E-02
44.8540 -1.955300 .252738E-01
62.0110 -1.007700 .156799E+00
99.4330 1.050400 .853233E+00
122.0900 2.003000 .977411E+00
145.6800 2.712200 .996658E+00
168.0000 3.214200 .999346E+00

BETA Pf
-4.0478 .258636E-04
-2.8816 .197837E~02
=1.9195 .274605E-01

-.9821 .163025E+00

1.0854 .861128E+00

2.0587 .980239E+00

2.7559 .997073E+00

3.2352 -999392E+00

247

(MED AND COV FOR LN DIST. ONLY)

.0853
.0225
.O2il
.1457
.0930
.0049
.0326

.0183

(MED AND COV FOR LN DIST. ONLY)

4.3774

2.5532

1.8309

2.5404

3.3321

2.7808

1.6112

.6534



EXAMPLE 3 :
LIMIT STATE FUNCTION : Z = x**2 + 0.5%Y**2
VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-N(10.,1.), ¥Y-N(10.,1.)

AMVFO SOLUTION EXACT SOLUTION

Z VALUE ---;;;;---‘——-—--;; ------ i BETA ;; ------ t ERROR (BETA)

74.959%0 -4.000000 .316860E-04 -4.0180 .293612E-04 .4500

91.0170 -3.000000 .134997E-02 -3.0250 .124323E-02 .8333
108:8800 -2.000000 .227501E-01 -2.0260 .213823E-01 1.3000
128.5400 -1.000000 .158655E+00 -1.0230 .153154E+00 2.3000
173.2600 1.000000 .841345E+00 .9780 .835963E+00 2.2000
198.3200 2.000000 .977250E+00 1.9760 .975923E+00 1.2000
225.1800 3.000000 .998650E+00 2.9750 .998535E+00 .8333
253.8500 4.000000 .999968E+00 3.9720 .999964E+00 .7000

EXAMPLE 4 :
LIMIT STATE FUNCTION : Z = X*¥Y**2 + X**3
VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-WwEI(l.,0.1), Y-EVD(1l.,0.1)

AMVFO SOLUTION EXACT SOLUTION

Z VALUE ---;;;;-------‘--;; ------ BETA ) Pf i %+ ERROR (BETA)
.7113 -3.205850 .673385E-03 -3.2030 .680084E-03 .0889
.9482 -2.534135 .563629E-02 -2.5350 .562239E-02 .0341
1.2371 -1.824495 .340386E-01 -1.8210 .343034E-01 .1916
1.5857 -1.021351 .153544E+00 -1.0190 .154101E+00 .2302
2.4829 1.054400 .854150E+00 1.0710 .B57915E+00 1.5744
3.03s3 2.193113 .985850E+00 2.1960 .985954E+00 .1316
3.6866 3.137531 .99914BE+00 3.1380 .999149E+00 .0149
4.4524 3.899628 .999952E+00 3.8960 .999951E+00 .0930
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EXAMPLE 5

LIMIT STATE FUNCTION :

VARIABLE DIST.

3119.8560

4335.4460

5923.2870

7952.9570

13645.9300

17478.2100

22090.2900

27581.5900

EXAMPLE 6 :

LIMIT STATE FUNCTION :

Z =

(MEAN/MED, STD/COV )

(X*Y)**2 + 0.5%W*+3

X-N(lO.:l.), Y—N(lO.,l-): w_N(lo- Il')

AMVFO

EXACT SOLUTION

~3.998916

-2.999298

-1.999437

~-.998969

.998969

1.999437

2.999298

3.998916

VARIABLE DIST.

SOLUTION
pPf BETA
.318315E-04 -3.9370
.135308E-02 -2.9550
.227805E-01 -1.9630
.158905E+00 -.9620
.84109SE+00 1.0290
«977220E+00 2.0280
.998647E+00 3.0250
.99996BE+00 4.0230

Z =

(MEAN/MED, STD/

cov) :

.412708E-04

.156341E-02

.248230E-01

.168025E+00

.848260E+00

+.978720E+00

.998757E+00

.999971E+00

X*Y**2 + 0.5*W**4 + Q.5%Ur+]3

(MED AND COV FOR LN DIST. ONLY)

1.5483

1.4769

1.8224

3.7007

3.0063

1.4286

-8569

.6023

(MED AND COV FOR LN DIST. ONLY)

X-N(10.,1.), ¥Y-N(10.,1.), W-N(10.,1.), U-N(10.,1.)

AMVFO SOLUTION

EXACT SOLUTION

Z VALUE BETA Pf BETA Pf % ERROR (BETA)

2025.2320 -3.998916 .318315E-04 -3.8050 .709262E-04 4.8492
2614.3090 ~2.999298 .135308E-02 -2.9390 .164643E-02 2.0104
3495.9250 -1.999437 .227805E-01 -1.9840 .236278E-01 L7721
4757.9910 -.998969 .158905E+00 -.9980 .159140E+00 .0970
8833.0310 .998969 .841095E+00 .9980 .B40860E+00 .0970
11879.7500 1.999437 .977220E+00 2.0050 .977519E+00 .2782
15774.3900 2.999298 .998647E+00 2.9990 .998646E+00 .0099

— 20662.8000 3.998916 .999968E+00 3.9920 .9939967E+00 .1729

-~
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EXAMPLE 7

LIMIT STATE FUNCTION :

VARIABLE DIST. (MEAN/MED,STD/COV) :

- —— ————

2269.4400

3086.2300

4029.0300

$139.9380

8194.8680

10287.7100

12837.5400

15906.5400

EXAMPLE 8 :

LIMIT STATE FUNCTION : 2 =

X-N(10.,1.), Y-EVD(10.,1.). W-FRE(10.,1.)
U-LN(9.95037,.1)

AMVFO SOLUTION

BETA P£
-8.555800 .585269E-17
-4.757521 .981134E-06
-2.312219 .103828E-01

-.775700 .218963E+00

.932774 .824532E+00
1.448784 .926301E+00
1.856761 .968327E+00
2.192935 .985844E+00

EXACT SOLUTION

-8.4590

-4.7200

-2.3080

-.7750

.9330

1.4490

1.8560

2.1920

X**5 + Xty**4q

.134840E-16

.118062E-05

.104995E-01

.219170E+00

.B24590E+00

.926331E+00

.968273E+00

.985B810E+00

Z = X¥Y**2 + 0.5*W**4 + 0.5*U**3

(MED AND COV FOR LN DIST. ONLY)

.1825

.0902

.0242

.0149

.0410

.0426

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-N(1.,0.1), ¥Y-N(1.,0.1)

AMVFO SOLUTION

EXACT SOLUTION

— - ——— 458 o - = — ———— —— — - - = = - —————

.3769

.6003

.9233

1.3774

2.8356

3.9358

5.3604

7.1774

-3.998920
-2.999300
~1.999400
-.998970
.998970
1.999400
2.999300

3.998920

.318309E-04

.135307E-02

.227825E-01

.158905E+00

.841095E+00

.977218E+00

.998647E+00

.99996B8E+00

-3.9950
-3.0110
-2.0180
-1.0210
.9770
1.9730
2.9630

3.9430
248

.323621E-04

.130201E~02

.217956E-01

.153627E+00

.835715E+00

.975752E+00

.998477E+00

.999960E+00

- - ——— —— - -

.3901

.9303

2.2053

2.1993

1.3204

1.2103

1.3984



EXAMPLE 9 ; CASE I
LIMIT STATE FUNCTION : Z = (X*Y)**2 + . Ssyeeq + 0.5%U**3
VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-N(10.,1.), ¥Y-N(10.,1.), W-N(10.,1.), U-N(10.,1.)
(EXACT SOLUTION FROM FPI; USE X AS X(1) )

AMVFO SOLUTION EXACT SOLUTION

Z VALUE ——-;;;; —————————— ;; -------- ;;;; --------- ;; ------ % ERRCR (BETA)
7495.8040 -2.999298 .135308E-02 -3.0460 .115961E-02 1.5571
9087.6890 -2.249443 .122421E-01 -2.2930 .109240E-01 1.9363
10934.8100 -1.499299 .668981E-01 -1.5300 .630084E-01 2.0477
13063.1600 -.748760 .227001E+00 -.7790 .217990E+00 4.0387
18273.8400 .748760 -772999E+00 .7030 .758972E+00 6.1114
21414.4600 1.499299 .933102E+00 1.4500 .926471E+00 3.2881
24952.9000 2.249443 .987758E+00 2.1890 .985702E+00 2.6870
28921.4600 2.999298 .998647E+00 2.9330 .998321E+00 2.2105

EXAMPLE 9 ; CASE II
LIMIT STATE FUNCTION : Z = (X*Y)**2 + (.S*W##4q + 0.5*U#+3
VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-N(10.,1.), Y-N(10.,1.), W-N(10.,1.), U-N(10.,1.)
(EXACT SOLUTION FROM FPI; USE Z AS X(1l) )

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA o Pf o BETA Pf i % ERROR (BETA)
7495.8040 -2.999298 .135308E-02 -3.0290 .122689E-02 -9903
9087.6890 -2.249443 .122421E-01 -2.2760 .114230E-01 1.1806
10934.8100 -1.499299 .668981E-01 -1.5200 .642555E-01 1.3807
13063.1600 -.748760 .227001E+00 -.7670 .221541E+00 2.4360
18273.8400 .748760 . 772999E+00 .7310 .767610E+00 2.3719
21414.4600 1.49929% .933102E+00 1.4790 -930430E+00 1.3539
24952.9000 2.249443 .98775BE+00 2.2290 .987093E+00 .9088
28921.4600 2.999298 .998647E+00 2.9800 .998559E+00 .6434
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EXAMPLE 10 ; CASE I
LIMIT STATE FUNCTION : Z = (X*Y)**2 + 0.5%W**4 + 0.5%U**3
VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-N(10.,1.), Y-EVD(10..,1.), W-FRE(10.,1.), U-LN(9.95037,.1)
(EXACT SOLUTION FROM FPI: USE X AS X(1) )

AMVFO SOLUTION EXACT SOLUTION

Z VALUE --—;;;;_---------;; ------ BETA N ;;—- % ERROR (BETA)
7532.7660 -3,627000 .143402E-03 -3.6240 .145076E-03 .0827
9099.4890 -2.606500 .45736B8E-02 -2.6210 .438365E-02 .5563
10934.6500 -1.635000 .510245E-01 ~1.6540 .490637E-01 1.1621
13062.7800 -.725965 .233930E+00 -.73%0 .229953E+00 1.7955
18284.3500 .805360 .789694E+00 .7780 .781716E+00 3.3972
*21421.7400 1.429682 .923596E+00 1.3630 .913559E+00 4.6641
24944.5600 1.957630 .974863E+00 1.8460 .967554E+00 5.7023

29364.4100 2.482820 .993483E+400 2.2000 .986097E+00 11.3911

EXAMPLE 10 ; CASE II
LIMIT STATE FUNCTION : Z = (X*Y)**2 + 0.5*W**4 + 0.5%U**3
VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-N(10.,1.), Y-EVD(10..1.). W-FRE(10.,1.). U-LN(9.95037,.1)
(EXACT SOLUTION FROM FPI:; USE Z AS X(1) )

AMVFO SOLUTION EXACT SOLUTION
Z VALUE BETA - P; N -—BETA— Pf % ERROR (BETA)
7532.7660 -3.627000 .143402E-03 -3.6210 .146769E-03 .1654
9099.4890 -2.606500 .457368E-02 -2.6170 .443535E-02 .4028
10934.6500 -1.635000 .510245E-01 -1.6540 .490637E-01 1.1621
13062.7800 -.725965 .233930E+00 -.7340 .231474E+00 1.1068
18284.3500 .805360 .789694E+00 .8080 .790455E+00 .3278
21421.7400 1.429682 .923596E+00 1.4020 .919542E+00 1.9362
24944.5600 1.957630 .974863E+00 2.0470 .979671E+00 4.5652
29364.4100 2.482820 .993483E+00 2.4670 .993187E+00 .6372
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Monte Carlo_Solution for Selected Points in Example 10

Z value 29364.4 24944 .5
g, AMVFO 2.483 1.958
B, Wu/FPI 2.200 1.846
g, Monte Carlo (Harbitz) 2.350 1.8290

95% Confidence Intervals
for Monte Carlo

(2.321, 2.384)

(1.858, 1.924)

9 Error in AMVFO relative

5.6 3.6
to Monte Carlo
MPPL Solution after 3rd move 2.500 1.967
% Error in MPPL (3 moves) 6.3 4.1

relative to Monte Carlo
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EXAMPLE 11
LIMIT STATE FUNCTION : Z = (L/D**4)'(6.79'Q'L“2/E+10.lBG‘A'T/G)
VARIABLE DIST. (MEAN/MED.STD/COV) ¢ (MED AND COV FOR LN DIST. ONLY)

Q-N(28.56,2.856), L-N(10.,.2), E-N(1.E7,5.E5),D-N(.75,.015)
A-N(4.0,0.08), G-N(3.8E6,1.9E5), T-N(115.,11.5)

AMVFO SOLUTION EXACT SOLUTION
Z VALUE ---;;;; —————————— ;; ------ BETA --;; ------ % ERROR (BETA)
.0609 -4.000000 .316860E-04 =3.9660 .365606E-04 .8500
.0691 =3.000000 .134997E-02 -2.9850 .141796E-02 .5000
.0783 -2.000000 .227501E-01 ~1.9950 .230214E-01 .2500
.0887 -1.000000 .158655E+00 -1.0000 .158655E+00 .0000
.1133 1.000000 -841345E+00 .9980 .840860E+00 -2000
.1279 2.000000 .977250E+00 1.9940 -976924E+00 .3000
.1443 3.000000 .998650E+00 2.9870 -998591E+00 .4333
.1627 4.000000 .999968E+00 3.9750 .999965E+00 .6250

EXAMPLE 12
LIMIT STATE FUNCTION : Z = (L/D"4)'(6.79'Q‘L"2/E+10.lBG’A'T/G)
VARIABLE DIST. (MEAN/MED, STD/COV) : (MED AND COV FOR LN DIST. ONLY)

Q-EVD(28.56,2.856), L-N(10.,.2), E-WEI(1.E7,5.ES5), D-N(.75,.015)
A-LN(4.0,0.02), G-LN(3.8E6,0.05), T~-FRE(115.,11.5)

AMVFO SOLUTION EXACT SOLUTION
Z VALUE ---;;;; —————————— ;; -------- ;;;; --------- ;; ------ ¥ ERROR (BETA)
.0615 -4.361100 .647553E~05 -4.3660 .633206E-05 .1124
.0694 =3.211800 .659594E~-03 -3.2200 .641016E-03 .2553
.0784 -2.091200 .182550E~-01 -2.0940 .181299E-01 .1339
.0886 -.991910 .160621E+00 -.9990 .158897E+00 7148
.1133 1.040600 .850969E+00 1.0580 .854972E+00 1.6721
.1278 1.928200 .97308S5E+00 1.9520 .974531E+00 1.2343
.1432 2.737600 -996905E+00 2.7480 .997002E+00 .379%9

.1586 3.455000 .g997252+00 .4180 .999685E+00 1.0709

3
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EXAMPLE 13 :
LIMIT STATE FUNCTION : Z = (X Y)**2
VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)
X-WEI(10.,2.), Y-FRE(8.,1.)

AMVFQ SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA Pf % ERROR (BETA)
807.3593 -2.955106 .156288E-02 -2.8814 .197963E-02 2.4942
1654.0090 -2.193385 .141398E-01 -2.1523 .156868E-01 1.8731
2846.9300 -1.484133 .688869E-01 -1.4550 .728347E-01 1.9630
4408.6280 -.764057 .222417E+00 -.7395 .229802E+00 3.2141
8896.7500 .791370 .785636E+00 .8202 .793949E+00 3.6431
12162.9900 1.551912 .939658BE+00 1.5951 .944655E+00 2.7829
16417.0000 2.205871 .986304E+00 2.2626 .988170E+00 2.5717
21247.7700 2.714446 .996681E+00 2.7580 .997092E+00 1.6045

EXAMPLE 14 :

LIMIT STATE FUNCTION : Z = (X Y)**3
VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

K-WEI(IO.,z.)' Y"I"RE(B.,I.)

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA Pf % ERROR (BETA)
90357.2400 -1.953609 .253737E-01 -1.9184 .275301E-01 1.8023
151943.600 -1.483706 .689435E-01 -1.4547 .728762E-01 1.9550
238449.100 -1.007343 .156885E+00 -.9817 .163124E+00 2.5456
355325.400 -.516413 .302783E+00 -.4919 .311395E+00 4.7468
714129.700 .529881 .701903E+00 .5525 .709697E+00 4.2687
982362.300 1.049881 .853114E+00 1.0841 .860840E+00 3.2593
1341195.00 1.552116 .939683E+00 1.5948 .944622E+00 2.7501
1822217.00 2.004785 .977507E+00 2.0606 .980329E+00C 2.7841
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EXAMPLE 15 :
LIMIT STATE FUNCTION : Z = X Y W
VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-N(10.,2.), Y-N(B.,1.), W-N(6.,0.8)

AMVFO SOLUTION EXACT SOLUTION

Z VALUE ---;;;; ---------- ;; -------- ;;;; --------- ;; ------ % ERROR (BETA)
111.5100 -3.998916 .318315E-04 -3.6840 .114833E-03 7.8750
177.6034 -2.999198 .135353E-02 -2.8440 .222762E-02 5.1747
259.9768 -1.999437 .227805E-01 -1.8960 .289800E-01 5.1733
360.2393 -.998969 .158905E+00 -.9200 -178786E+00 7.9050
620.8680 .998969 -841095E+00 1.0660 .856788E+00 6.7101
784.4523 1.999437 .977220E+00 2.0590 .980253E+00 2.9790
972.3621 2.999298 .998647E+00 3.0490 .998852E+00 1.6571
1186.2070 3.998916 .999968E+00 4.0320 .999972E+00 .8273
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Monte Carlo Solution for Selected Points in Example 19

Z value 111.51 177.60 259 .08

8, AMVFO -3.998 -2.999 -1.999

8, Wu/FPI -3.684 -2.844 -1.896

8, Monte Carlo (Harbitz) -3.669 -2.813 -1.88¢6

#5% Confidence Intervals (-3.649; -3.698) |(-2.792, -2.839)  (-1.863,
for Monte Carlo

% Error in AMVFO relative

bﬂto Monte Carlo 9.0 .6'6 s.0

MPPL Solution after 3rd move -3.778 -2.940 -1.980

% Error in MPPL (3 moves) 3.0 4.5 5.0

relative to Monte Carlo
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EXAMPLE 16

LIMIT STATE FUNCTION : Z = X Y W

VARIABLE DIST.

————— i ————— Y —

77.3040

156.9944

253.7254

360.4638

619.1482

787.8300

984.0049

1151.5420

X-WEI(10.,2.), Y-FRE(8.,1.). W-EVD(6.,0.6)

AMVFO SOLUTION

EXACT SOLUTION

—-4.388275

-3.088883

~-2.019468

-1.006387

1.043337

1.897304

2.665438

3.310338

Pf

(MEAN/MED, STD/COV) : (MED AND COV FOR LN DIST. ONLY)

Pf BETA $ ERROR (BETA)
.571725E-05 -4.0360 .27198SE-04 8.0276
.100462E-02 -2.9370 .165709E-02 4.9171
.217192E-01 -1.9400 .261898E-01 3.9351
-157115E+00 -.9430 .172840E+00 6.2985
.851604E+00 1.1170 .868003E+00 7.0603
.971106E+00 2.0220 .978412E+00 6.5723
.996156E+00 2.7850 .997324E+00 4.4856
.999534E+00 3.2820 .999485E+00 .8561
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Monte Carlo Solution for Selected Points in Example 16

Z value. . 77.3 156.99 619.15
g8, AMVFO -4.388 -3.088 1.0433
g, Wu/FPI -4.036 -2.937 1.117
8, Monte Carlo (Harbitz) -4.023 -2.919 1.102

95% Confidence Intervals
for Monte Carlo

(-3.999, -4.055)

(-2.895, 2.951)

(1.075, 1.126

% Error in AMVFO relative

: 9.1 5.8 5.3
_to Monte Carlo
MPPL Solution after 3rd move -4.080 -2.980 1.030
% Error in MPPL (3 moves) 1.4 2.1 6.5

relative to Monte Carlo
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EXAMPLE 17
LIMIT STATE FUNCTION : Z = X*Y##2¢y
VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

R
X-WEI(10.,2.), Y-FRE(8.,1.), W-EVD(6.,0.6). "

-~

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pf BETA Pt % ERROR (BETA)

363.3479 -5.232059 .839807E-07 -4.6020 .209444E-05 12.0423

926.2241 -3.541243 -199165E-03 =3.3140 -45991S5E-03 6.4170
1717.4930 -2.243117 .124446E-01 -2.1410 .161370E-01 4.5525
2668.5220 -1.048516 .147200E+00 ~.9800 .163543E+00 6.5346
5342.5160 1.070247 .857746E+00 1.1490 .874722E+00 7.3584
7219.3570 1.857397 .968373E+00 1.907¢ .971740E+00 2.6706
9337.5020 2.425469 .9923S6E+00 2.4540 .992936E+00 1.1763

11673.7000 2.858362 .997871E+00 2.8670 .997928E+00. .3022
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Monte Carlo-Solution for Selected Points in Example 17

Z value . 363.35 82€.22
8, AMVFO -5.232 -3.54)
8, Wu/FPI -4.602 -3.314
8, Monte Carlo (Harbitz) -4.613* -3.331
95% Confidence Intervals (-3.307, -3.3€3)
for Monte Carlo

%Z Error in AMVFO relative

13.4 €.3

_to Monte Carlo

MPPL Solution after 3rd move |-4.700 -3.37
%2 Error in MPPL (3 moves) 1 g 1.2

relative to Monte Carlo
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EXAMPLE 18 :
LIMIT STATE FUNCTION : Z = X*Y**2*W - 0.5*Y*W**2
VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST. ONLY)

X-WEI(10.,2.), Y-FRE(8.,1.), W-EVD(6.,0.6)

AMVFO SOLUTION EXACT SOLUTION

Z VALUE BETA Pt BETA Pf t ERROR (BETA)

290.0668 -5.190314 .105168E-06 -4.4700 .391445E-05 13.8780

838.3711 -3.515534 .219478E-03 -3.2690 .539702E-03 7.0127
1616.3430 -2.231815 .128136E-01 -2.1280 .166685E-01 4.6516
2549.8740 ~1.048558 .147191E+00 -.9810 .163296E+00 6.4429
5167.1910 1.078238 .B59536E+00 1.1470 .874309E+00 6.3773
7011.5710 1.854104 .968138E+00 1.9090 .971869E+00 2.9608
9087.6650 2.429086 .992432E+00 2.4540 .992936E+00 1.0257

11399.7100 2.854161 .997842E+00 2.8680 .997935E+00 .4849
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Monte carlo_Solution for Selected Points in Example 18

Z value. . 290.07 838.37
8, AMVFO -5.190 -3.515
8, Wu/FPI -4.470 -3.26¢9
g, Monte Carlo (Harbitz) -4.472* -3.280
95% Confidence Intervals (-3.256, -3.312)
for Monte Carlo

% Error in AMVFO relative

‘ 16.1 7.2
_to Monte Carlo
MPPL Solution after 3rd move -4.540 -3.325
% Error in MPPL (3 moves) 1.5 1.4

relative to Monte Carlo

*Monte Carlo by mean value method with strat
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EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

During our studies, we have also worked the following examples. In all
cases the agreement between AMVFO and the exact solutions for at least one point
in the tail has been "excellent".

19 :

LIMIT STATE FUNCTION : Z = 2 X - Y + 2 W

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN
X-WEI(10.,1.0), Y-FRE(10.,1.0), W-EVD(10.,1.)

20 :

LIMIT STATE FUNCTION : Z = X**1.2 + (0.05%y**].2

VARIABLE DIST. (MEAN/MED,STD/COY) : (MED AND COV FOR LN
X-N(10.,1.), ¥Y-N(10.,1.)

21 :

LIMIT STATE FUNCTION : Z = X*#1.5 + 0.05%Y**] 5§

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN
X-N{10.,1.), ¥Y-N(10.,1.)

22 :

LIMIT STATE FUNCTION : Z = X**1.5 + 0.05%Y**]. 5

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN

‘

X-WEI(10.,1.), Y-EVD(10.,1.)

23 :

LIMIT STATE FUNEEION t 2 = 4%X**2 + 3nyae] 5§ - 24yre] 2

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN
X-WwEI(10.,0.5), Y-EVD(20.,2.), W-LN(6.0,0.09)

24 :

LIMIT STATE FUNCTION : 2 = 4*X**2 + 3#y##] § _ 2eyee] 2

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV POR LN
X-LN(10.,0.05), Y-LN(20.,0.1), W-LN(6.0,0.09)

25 :

LIMIT STATE FUNCTION : Z = -2%X*%*2 + 3#%y#®#)] 5 4 {feyex] 2

VARIABLE DIST. (MEAN/MED,STD/COV) : (MED AND COV FOR LN DIST.

X-WEI(10.,0.5), Y-EVD(20.,2.), W-LN(6.0,0.09)

-~

DIST.

DIST.

DIST.

DIST.

DIST.

DIST.

ONLY)

ONLY)

ONLY)

ONLY)

ONLY)

ONLY)

ONLY)



EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

26 :

LIMIT STATE FUNCTION : Z = X Y

VARIABLE DIST. (MEAN/MED,STD/COV)
X-N(10.,2.), Y-N(8.,1.)

27

LIMIT STATE FUNCTION : Z = (X Y)**2

VARIABLE DIST. (MEAN/MED,STD/COV)
X-N(10.,1.), ¥Y-N(10.,1.)

29

LIMIT STATE FUNCTION : Z = (X Y)**3

VARIABLE DIST. (MEAN/MED,STD/COV)
X-N(10.,1.), Y-N(10.,1.)

29 :

LIMIT STATE FUNCTION : Z = (X Y)**4

VARIABLE DIST. (MEAN/MED,STD/COV)
X-N(10.,1.), ¥Y-N(10.,1.)

30 :

LIMIT STATE FUNCTION : Z = (X Y)**5

VARIABLE DIST. (MEAN/MED,STD/COV)

X-N(10.,1.), Y-N(10.,1.)
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APPENDIX C

Flow Chart for Analysis to Compute CDF's
of Correlated Response Variables

P. Wirsching
University of Arizona
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FTLOW CHART FOR ANALYSIS TO COMPUTE CDF'S OF CORRELATED

RESPONSE VARTABLES

Input:
1. Response functions; Zi; i=1,2, .. .K

2. Mean, std. dev. of each basic variable, Xi; i=1,2, .. .N

Note: Z1 = Master
22, 23, . . . ZK = Slaves

¢ step 1¢2)
Evaluate Z1 and 22 at mean values of Xl and X2 ‘

and at perturbed values of (ui + 0.1 oi) of Xl and x2 ‘

é STEP 2
Using results of Step 1, estimate u,l, 9,9 and

by MVFOSM

] Print u,y, 0595 Hzp0 972
Hz20 922

# 4 STEP 3
Define the sample space for Z1.

Z =y +3jo

1] Z1 Z1

j=-4, -3, ...,0,1,...3,4
Note: The CDF will be defined by 9 points

* STEP 4
Using the results from Step 1, expand s1=a +a. X +a. X
Z1 and Z2 as linear functioms about g ° 171 272

2 = bo + bl Xl + b2 X2

I Print a's and b's

Y

b
Consider Z1; Use Hasofer-Lind (H—Lgi%o compute: STEP 5

1. Blj for each le Print B. - Z.;
« 1 1
2. Design point for each le, denoted as zj
Note: This is the first estimate of the
CDF of 21

Notes:
(a) Hereafter in this chart, N = K= 2 for siﬁplicity.
(b) H-L is used in MPPL3. Wwu/FPI is used in MPPL9 in place of H-L.
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STEP 6

x 2 (X*
Compute Zi' =2 mj)

3 Print 81 - new Z_ .

13
1i=1,2 =<4, ...+
using the design point from Step 5
Note: This provides an improved value
of Z1 for the CDF of Z1.

+ STEP 7
Compute correlation coefficient for linear Print p
form of 21, 22
2 2
3) By 9y * 3y by og
o = 1 2
2 2 2 2 2 2 2 2
(a; g, +a. ¢ Y(b, g, + b, o )
/ 17x 2 7%, 17X 27K,
‘6 STEP 8
Obtain estimate of 62 Print 8 -z
2j 23
sz = Blj P

(from Step 6)
lote: This is the first estimate

of the CDF of 22

Y

STEP 9
Obtain perturbed solutions for Zl at all %;
* *
e.8., Zl(Xl + .loX , xz)
1
]
V STEP 10

Expand 21 as a linear function Print coefficients of linear 21

*
at each zj at each design point

Y

STEP 11

For each Z1 of Step 10, use H-L to compute, Print 81

-2,.
h 1j
1. Blj for each le

2. Design point

(from Step 6)

Note: This provides an improved

g for the CDF of 21
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|
- Y

* *
Compute Zij = zi(ﬁj)
i=1,2 j=<=4, . ..+ 4

using the design point of Step 11

Note: This gives an improved CDF for 21

Y

Compute correlation coefficient for each

Zij of Step 10 and 22 (See Step 7)

Y

If ABS(pj) is larger than p of Step 7,
Blj Dj
where Blj is from Step 1l and Z; is from
Step 12.
Note: This gives the final CDF of

improve 82 of Step 8 by sz =

71 and 22 although several

more iterations are possible
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STEP 12

*
Print Blj - le (Step 12)

STEP 13

Print p

STEP 14
]

Print B

13

2]

-2

-2

1j

23

(Step 12)

(Step 8 or -
Step 14 pairs)






APPENDIX D
Details of Approximate Structural Models for PAAM

R.C. McClung
Southwest Research Institute
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APPROXIMATE ANALYSIS CASE 2A.S

COMPONENT: LOX post

MODEL: Thick-walled cylinder

ANALYSIS TYPE: Static analysis of independent pressure and
temperature loadings

RESPONSE TYPES: Stresses in hoop, radial, and axial directions

ANALYTICAL MODELS:
The LOX post is here modeled as a thick-walled cylinder subjected to different
internal and external pressures and temperatures.

Pressure Loading
The stresses in a thick-walled cylinder due to internal and external pressure
are available from the classical Lame’ solution as

(ro/r)z(pa- pl)+ P~ pokz

’ k-1 k?-1
(rn/r)z(po-pl) Pn’PokZ
0o= "~ 2 t T
k-1 k-1
where
rﬁ
k=—
r

and
p..p, = inner, outer pressure
r = radial position
r,.r, = inner, outer radii
o,.0, = radial stress, hoop stress

See Timoshenko and Goodier, Theory of Elasticity, 3rd edition, 1970, pp. 69-71.
1f the ends are restrained against axial motion, so that an axial stress
is induced by the attempted axial expansion or contraction, that axial stress
is given by
2v(p,~ P.k*)

% k%-1

Thermal Loading
Assume a steady-state temperature distribution with internal temperature
T, and external temperature T,. An appropriate solution which satisfies viT=0
is
In(r,/r)
In(k)

The solutions are then given by

T=T,+(T,-T,)
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. - (ro/r)z—l_ In(r,/r)

‘ k-1 In(k)
(ro/r)?+1 I -In(r,/r)

0 - — -

’ k2-1 In(k)
2R3 1-2In(r,/r)

% k2-1 In(k)

where
_QE(T,-T,)

2(1-v)
and
E = Young's modulus

v = Poisson’s ratio
a = coefficient of thermal expansion

These equations are based on the assumption of no end restraint. If the ends
are restrained to prevent axial motion, then the axial stress is given by

. 2(1—v—k2)6 2vk? L py-2In(r./r)
a k?-1 'ki-1 In(k)
where
g= _ET
2(1-v)

In this expression, 7 should be interpreted as the difference between the actual
temperature at some location and the reference temperature at which there are
no thermally induced stresses or strains. Note that if the entire cylinder
experiences a uniform temperature rise, this equation gives the axial stress as
-aFT.

See Timoshenko and Goodier, pp. 448-451, J. Chakrabarty, Theory of Plasticity,
1987, pp. 334-337, and M. G. Derrington, "The Onset of Yield in a Thick Cylinder
Subjected to Uniform Internal or External Pressure and Steady Heat Flow," Int.
J. Mechanical Sci., Vol. 4, 1962, pp. 83-103.

INPUT VARIABLES:

Geometry
r,.r, - inner and outer radius

Material
£ - Young'’'s modulus
v - Poisson’s ratio
a - coefficient of thermal expansion

Loads
P. P, - internal and external pressures
T..T, - average wall temperatures at
inside and outside surfaces of cylinder
T,, - reference temperature
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RESPONSE VARIABLES:
Ooax - Maximum stress in shell, with corresponding

orientation and location
0,(r).o.(r).o,(r) - hoop, radial, or axial stress

at user-defined location
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APPROXIMATE ANALYSIS CASE 2B.S

COMPONENT : LOX post
MODEL: Hollow cylindrical beam with
elastic end restraint
ANALYSIS TYPE: Static analysis of axial loads due to pressure

and temperature, transverse loads due to fluid
drag, and buckling due to axial loads.

RESPONSE TYPES: axial stresses, onset of elastic instabilicy

ANALYTICAL MODELS:

The LOX post is modeled as a simple beam with a constant cross-section
corresponding to a hollow circle. One end is assumed to be rigidly fixed and
the other end is elastically restrained. This restraint is characterized by two
spring constants: &k, is the resistance to axial motion in an equation of the
form F=k,u , and k, is the resistance to rotation in an equation of the form
M=k,0 . In both cases, a rigid end condition may be selected by choosing k- .

Axial stress due to differential pressure across face plate

Foq
[o} B ———————
n(r3-1D)

where

0, = axial stress
fo = axial load due to pressure differential
r, = inner radius
r, = outer radius

Axial temperature gradient
Assuming a linear distribution of temperature from the inlet end to the
outlet end,

L(Tou=To)* 5(T =T ou)

F
T (%-5)

where

Fr = induced axial load (positive value denotes compression)

Tou-Tw = temperatures at outlet end and inlet end

T, = reference temperature at which no thermally induced
stresses or strains are present

L = length of beam

a = coefficient of thermal expansion

£ = Young's modulus

A = cross-sectional area of beam = n(r2-r?)
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Iransverse Load due to Fluid Drag
The maximum bending moment in the beam when subjected to a uniformly
distributed transverse load occurs at the fixed end and is given by the expression

where
1 EI
RN
n(réi-r?
[ = (r )
4
and

w = magnitude of the distributed load

M = bending moment

The maximum bending moment in the beam when subjected to a transverse point
load P at a distance x from the fixed end occurs at one of the two ends, depending
on the value of x/L. At the fixed end, the moment is

M-Px(l-f){(l"z%)-gi_a}

and at the elastically restrained end, the moment is

Px? x
5503
The axial stress associated with these bending moments is given by the
well-known form

Mr

g = —

¢ 1

Onset of Elastic Instability

Estimates of the critical load for buckling are based on more general
expressions developed by Timoshenko and Gere, Theory of Elastic Stabjlity, 2nd
edition, 1961, pp. 59ff. Those expressions result in transcendental equations
for the critical load. The equations given here are empirical fits to the exact
solution. The exact solution and empirical expression are compared graphically
in Fig. 2B.S.1. The possible effects of simultaneous transverse loading are not
considered.

Fr ) k 2.1
— - 2+2{gsec '(.296—°—£‘ l)>
n El

and
F., = critical axial buckling load
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INPUT VARIABLES:
Geometry
L - length of beam
r..r, - inner and outer radius
kq.k, - axial and bending stiffness
Material
E - Young's modulus
a - coefficient of thermal expansion

Loads

T, - reference temperature at which no

thermally induced stresses or strains are present
Teu T - average wall temperatures at

outlet end and inlet end

P - pressure differential across face plate
w - distributed transverse load due to fluid drag
P(x) - transverse point load due to fluid drag

acting at a distance x from the fixed end

RESPONSE VARIABLES:

0, - axial stress (maximum value, value at

user-defined location)
F/F., - ratio of axial load to critical buckling load
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Fcr-Frefl

EFFECT OF END STIFFNESS ON BUCKLING

Exact Solution and Empirical Formula

Figure 2B.S.1l.

T { 1 1 I

20 40 60

Normalized End Stiffness (kL/El)

Comparison of Exact Solution and Empirical Formula
for Effect of End Stiffness on Critical Buckling Load
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APPROXIMATE ANALYSIS CASE 2.V

COMPONENT : LOX post

MODEL: Hollow cylindrical beam with
elastic end restraint

ANALYSIS TYPE: Vibration

RESPONSE TYPES: Natural frequencies and mode shapes

Transverse displacement and bending stress
response to harmonic and random excitation

ANALYTICAL MODEL:

Free Vibration

The natural frequencies are given by the expression

S
fl= 2 -
2nl pA

where

n(ro-r!)
-
A=n(ri-r?)
f = frequency (hertz)
i = mode number
= frequency factor
= length of beam
Young’s modulus
= mass density
= cross-sectional area of beam
r..r, = inner, outer radius

An equation of this type is given in R. D. Blevins, Formulas for Natural
Frequency and Mode Shape, New York: Van Nostrand Reinhold, 1979.

Values for A, are given approximately by the following expressions, depending
on the boundary conditions at the two ends of the beam:

I

A0 MmN >
1

fixed-pinned: AP ain+nsa
fixed-fixed: AP winens2

For the lowest fundamental modes, it is necessary to use more exact values
for the frequency factors. These are as follows:

Mode Number Fixed-Fixed Fixed-Pinned
1 4.730040744863 3.92660231
2 7.853204624096 7.06858275
3 10.99560783800 10.21017612
4 14.13716549126 13.35176878
5 17.27875965740 16.49336143
6 20.42035224563
7 23.56194490204
8 26.70353755551
9 29.84513020910
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More precise values for A, at the higher mode numbers were taken from T.-C. Chang

and R. R. Craig, Jr., "Normal Modes of Uniform Beams," J. Engineering Mechanics
Div., ASCE, Vol. 95, August 1969, pp. 1027-1031.

Elastic end restraint is accommodated. The nondimensional quantity k,L/E/
is evaluated to determine the appropriate end condition. Here k, is a rotational
spring stiffness with units of [force*length] satisfying the relationship M =k,6.
Note that if k,L/El < .01, the variable end condition is approximately pinned,
while if k,IL/E! > 1000, the end condition is effectively fixed. A firsc
approximation to the LOX post geometry is to assume that the inlet end is fixed
and the outlet end has some finite elastic stiffness. A smooth, continuous
empirical relationship which estimates the frequency factor with acceptable
accuracy for all k,L/El is given by

A, =in+C v,
where
C,=\P-in

Note that C, reduces to n/4 for i > 5. The v, term is equal to

o[ () ool (o) )

This empirical relationship is compared directly with tabulated results from an’
exact analysis (R. C. Hibbeler, "Free Vibration of a Beam Supported by Unsymmetrical
Spring-Hinges," J. Applied Mechanics, Trans., ASME, Vol. 42, 1975, pp. 501-502)
in Fig. 2.V.1. Note that w,ranges between 1 (pinned) and approximately 2 (fixed).
The empirical relationship is less exact for truly intermediate stiffnesses
(e.g., kyL/EI = 10), where no single equation can easily correlate the frequency
factors for all mode numbers. The function is smooth and gives the proper sense
of the analytical results over the full range of k,L/EI values and is quite
accurate nearer the limiting conditions, which are likely more relevant to the
actual design. Note also that at higher modes, the end conditions are less and
less significant. For the fifth mode, fixed-fixed and pinned-pinned frequencies
differ by only 10%.

Mode shapes are given approximately by the expression
¢, = cosh(B,)- cos(B,) - o,{sinh(B,)-sin(B,)}
where

8 AX
R A

cosh(A,)-cos(X,)
i sinh{A,)-sin(}\,)

Note that x=0 corresponds to the fixed end.

An axial load may have some effect on the natural frequency. An approximate
formula for this effect is

[ FA
falr—o- f.‘r-o l.'l:—‘:;\-‘z
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where F. is the critical buckling load (see Approximate Analysis Case 2B.S).
Note that compressive loads (F negative) decrease the natural frequency and
tensile loads increase the natural frequency. The changes in mode shape resulting
from axial load are very small and may be neglected.

If it is desirable to include a slight taper in the beam, this can be
accommodated approximately by making appropriate adjustments in the moment of
inertia and cross-sectional area. Effective values for these two quantities are
given by making the substitution

Ty =Vab

where a and b are the appropriate radial dimensions at the two ends of the beam.
This adjustment does not account for changes in the mode shape caused by the
taper, but gives a first-order correction for the natural frequencies. For
further information, see R. P. Goel, "Transverse Vibrations of Tapered Beams,"
J. Sound and Vibration, Vol. 47, 1976, pp. 1-7, and H. D. Conway and J. F. Dubil,
"Vibration Frequencies of Truncated-Cone and Wedge Beams," J. Appljed Mechanics,
Trans. ASME, Vol. 32, 1965, pp. 932-934.

Forced Vibration

A simple particular solution for the forced vibration problem is based on
the principle of receptances and considers only those response terms having the
same frequency as the excitation. For a harmonic transverse point loading at
the point x=x, of the form

F(x,. )= P e

the response at the point x=x, is given by
y(x. t)=a,,Pee'
where
S 6,(x0)8,(x2)
P A ApL(wi-w?)
is the receptance. The form of ¢,(x) is given above in the discussion of mode

shapes for free vibration. The series form of the receptance is usually dominated
by the terms corresponding to the two nearest natural frequencies.

The maximum outer fiber bending stresses at x=x, due to a harmonic point
load at x=x, are given by the form

0(x,. t)=y ,Pge'
where

- - ro£¢,(xl)¢,"(xz)
;i ApL(wi-w?)

Yz
and
A 2
$, (x)= (T) {cosh(B,)+cos(B,)-o,[sinh(B,)+sin(B,)])

1f the point load P, is replaced by a uniformly distributed load W per unit

length, then similar equations hold true. P, is replaced by W/, and ¢.(x,) in the
expressions for a,, and v,; is replaced by the term
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(%)(sinh()\,)— sin(A,)-¢,[cosh(X,)+cos(A,)]+20,)

More general equations can be written to include the effects of hysteretic
or structural damping. The original differential equation of motion

mE(1)+ mwE(t) = F(1)
is modified in the stiffness term to the form

mE(L) + mw?(1+1m)E() = F(1)
where n, is the structural damping factor corresponding to the ith mode. Then
we can write for the receptance the expression

- i#,(h)(’,-(xz)

a X, . -iY
12 & APL ( i I)
where
w?-w?
X -

2 2y2, 12,4
2
n,w,

1

(wi-w?)?+nlw]
Note that the complex conjugate of the receptance is given by

. = ¢,(x)¢,(x2) )
aj, ,Z. il K )
Random Vibration

The spectral density S,,(w) of the motion of x, is related to the spectral
density S,,(w) of the load P(!) at point x, by the relationship

S, (w)=la;;1°S,,(w)
If multiple point loads are involved, the PSD of the response at a point x, is
given by

S, (w)= Z Z C!.,,'G.,.S,’,'(w)

rels=1
where S, , (w) is the cross spectral demnsity of the loads P, and P, When r=s,

the term denotes the simple spectral density of the appropriate load P.
Similar expressions can be written for the spectral density of the response
stresses by appropriate substitution of vy for a.

Mean square values for the response variables are obtained by numerically
integrating the spectral density of the desired response variable over a specified
range of excitation frequencies. The selection of specific frequency bands for
the integration scheme must consider the locations of the natural frequencies.

INPUT VARIABLES:

Geometry
L - length of beam
r,.r, - inner and outer radius of beam
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Material
£ - Young's modulus
P - Mass density
k, - rotational spring stiffness at the elastically restrained
end of the beam

Loads
P.(x,) - magnitude of nth harmonic point load, located at position x,
W - magnitude of harmonic uniform distributed load
w - circular frequency of harmonic exciting force
N - structural damping factor
power spectral density and cross-spectral density
of multiple random excitations

RESPONSE VARIABLES:

f. - natural frequencies

Y{(x) - normalized mode shapes for free vibration
y(x) - amplitude of displacement response
to harmonic forced vibration
o(x) - amplitude of stress response
to harmonic forced vibration
power spectral density of transverse displacements and
bending stresses at various positions along the beam
mean square values of the displacements and stresses
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Frequency Factor

2.1
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EFFECT OF END STIFFNESS ON FREQUENCY

Exact Solutions and Empirical Formula
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Psi

EFFECT OF END STIFFNESS ON FREQUENCY

Exact Solutions and Empirical Formula

N
—
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Figure 2.V.1.

T ¥ ki T T i T

0.1 10 1000 100000
Normalized End Stiffness (kL/El)

Comparison of Exact Solutions and Empirical Formula
for Effect of End Stiffness on Natural Frequencies
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APPROXIMATE ANALYSIS CASE 3.5

COMPONENT : Transfer duct

MODEL: Circular cylindrical shell

ANALYSIS TYPE: Static analysis of independent pressure and
temperature loadings, including buckling

RESPONSE TYPES: Stresses and displacements

Onset of elastic imstability

ANALYTICAL MODELS:

The transfer duct is typically conical in shape with a circular or elliptic
cross-section. The semi-vertex angle of the cone is typically small, however,
and for that geometry it is sufficiently accurate to approximate the shape as
an equivalent cylinder. This is a cylinder with radius equal to the average
radius of the cone and length equal to the meridional length of the cone. As
a further simplification appropriate to an approximate method, cross-sections
are assumed to be circular.

Static Stresses

Static stresses arise from both the external pressure and the thermal .
gradients. Here we will calculate stresses at two locations: the midsection of
the cylinder, equidistant between the two ends and assumed to be free of end
effects; and at the ends, where we assume the cylinder to be rigidly clamped.
We must be careful to maintain a consistent sign convention, such that compressive
stresses are negative and tensile stresses positive.

External pressure causes membrane stresses in the shell. These can be
estimated from common thin-shell theory as

a

o - e ——
i h
where o, indicates the hoop stress, p the external pressure (greater than the

internal pressure), a the mean radius of the cylinder, and h the thickness of
the cylinder wall. Note that a positive external pressure leads to a negative
(compressive) hoop stress. If the cylinder is constrained against axial expansion
or contraction, there will be an induced axial stress equal to

¢,=vo,
These expressions are all applicable away from the ends. Near the ends

there is assumed to be total constraint, which induces certain bending stresses.
An axial stress at the ends can be calculated as

where
.3 -v?)
azhz

B‘
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This is an outer fiber stress which will have different sign on the inner and
outer surfaces of the cylinder wall. For a positive external pressure, the axial
stress will be Compressive on the outside and tensile on the inside. A corresponding
hoop stress will be generated according to o,=Vv0,. These results are developed
from the work of Timoshenko and Woinowsky-Krieger, Theory of Plates and Shells,
2nd edition, 1959, pp. 466-501.

There are two possible sources of thermal stresses to be considered here.
The first is that the entire cylinder experiences an increase in average temperature
from the stress-free reference temperature. The second is that there is a thermal
gradient through the thickness of the cylinder wall.

We consider first the thermally induced stresses at some distance from the
ends. A uniformly distributed change in temperature causes no thermal stresses
in the absence of restraint. If the ends are restrained against axial motion,
there will be an induced axial stress equal to

o,=-EaldT,,

where AT,,, is the average temperature change in the entire shell, £ is Young's
modulus, and a is the coefficient of thermal expansion. The negative sign
indicates that a positive temperature change causes a compressive stress.

The radial displacement due to a uniform thermal expansion is given by

w=aalAT

avg

A uniform thermal gradient through the thickness characterized by AT, (where
the temperature on the inside is higher) results in stresses

o o *EGAT.
T T 2(1-v)

In this case, the stresses are tensile on the outer surface and compressive on
the inner surface.

Stresses near the ends are more complex and, of course, depend more directly
on the end conditions. Here we will consider the limiting condition of fixed
end conditions. A uniform thermal expansion of the entire cylinder results in
an additional axial stress at the end of

J3
g, "= *ﬁEGATﬂW

(where the minus sign denotes compression on the outer surface) and an additional
hoop stress at the end of

o,~-EalT,,

The radial displacement is zero at the ends under these conditions, of course,
but it increases to 1.067 of its midsection value at the location fx = 2.4 before
dropping back to the steady level.

See again Timoshenko and Woinowsky-Krieger, pp. 497-501, and also H. D. Tabakman
and Y. J. Lin, "Quick Way to Calculate Thermal Stresses in Cylindrical Shells,”
Machine Design, September 21, 1978, pp. 138-143.

292



Buckling

Buckling can be caused by the combined action of a uniform external pressure
and the restrained thermal expansion of the shell, which induces a compressive
axial stress. The recommended practice for the calculation of critical buckling
loads due to these conditions is given by the linear rule

o]
o(" pcr

where R, and R, are the ratios of allowable to critical load for each load type
considered independently.
The critical compressive buckling stress is given by the form

o)

otrs———__ -

3(1-vi)\a

where vy, is an empirical factor used to correct the disparity between theory and
experiment. A suggested expression for v, is

v, = 1-0.901(1-¢™*)
where

1 a
*“TeVr

The critical external pressure is calculated as

0.855 EVY:
3 3
A=y () (E)
Here J;: is conservatively estimated as 0.75.

These equations are based on the recommendations of NASA SP-8007, Buckling

of Thin-walled Circular Cylinders, August 1968 (rev.), one of a series of NASA
space vehicle design criteria monographs.

The end conditions can have a complex influence on the critical buckling
load, depending on the nature of the end restraint. One factor is the restraint
against rotation of the ends, analogous to the influence of fixed or pinned ends
on the behavior of a slender column. This effect is considerably less significant
for cylindrical shells, since the buckled shape usually corresponds to larger
numbers of axial and circumferential nodes. The equations given above are for
simply supported ends, which is a slightly conservative estimate. Another, more
complicated factor, arises due to constraint against radial displacement at the
ends. When the shell heats up and expands, there will be not only an axial
expansion but also a circumferential and radial expansion. Far from the ends,
this expansion will be unrestrained, but at the ends there may be some restraint
which prevents or limits the displacements. This will cause some bowing of the
cylinder wall, and this initial prebuckling deformation will further reduce the
critical axial load. This is a complex nonlinear effect, and its analysis is
further complicated by uncertainties regarding the exact nature of the end
conditions in the actual component. As a first approximation for the current
linear PAAM code, we will neglect all end effects.

-
cr
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INPUT VARIABLES:

Geometry
L - equivalent length of cylinder
a - equivalent mean radius of cylinder
h - thickness of cylinder wall

Material
£ - Young’'s modulus
v - Poisson's ratio
a - coefficient of thermal expansion

Loads
p - external pressure
T,.T, - temperatures at inner and outer surface of wall
T,, - reference temperature at which no

thermally-induced stresses or strains are present

RESPONSE VARIABLES:

0,.0, - axial and hoop stresses at the ends and at the mid-section of

the shell
critical buckling ratio
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APPROXIMATE ANALYSIS CASE 3.V

CCMPONENT : Transfer duct

MODEL: Circular cylindrical shell

ANALYSIS TYPE: Vibration

RESPONSE TYPES: Natural frequencies and mode shapes

Response to harmonic and random excitation
ANALYTICAL MODELS:

Free Vibration

Typical transfer ducts are generally conical in shape with circular or
elliptical cross-sections. These cones are here analyzed as "equivalent cyl-
inders," cylinders having their radius equal to the average radius of the cone
and their length equal to the meridional length of the cone. For small semivertex
angles, this approximation is quite good, as confirmed by R. F. Hartung and V.
A. Loden, "Axisymmetric Vibration of Conical Shells," Journal of Spacecraft and
Rockets, Vol. 7, No. 10, October 1970, pp. 1153-1159, and also by G. Herrmann
and I. Mirsky, "On Vibration of Conical Shells,” Journal of the Aerospace Sciences,
Vol. 25, 1958, pp. 451-458. Other nondimensional parameters, including the ratio.
of length to radius, were considered when assessing the adequacy of the
approximation.

Another issue to be resolved is the matter of boundary conditions. Several
different end conditions are possible, including restraint of radial displacement,
axial displacement, and rotation at the ends. Many combinations are possible.
K. Forsberg ("Influence of Boundary Conditions on the Modal Characteristics of
Thin Cylindrical Shells,™ AIAA Journal, Vol. 2, No. 12, December 1964, pp.
2150-2157) has suggested that the most significant influence on natural frequencies
is due to the condition placed on the axial displacement. These effects are
most pronounced for the lowest natural frequencies. As the number of axial
half-waves increases, the model characteristics for all boundary conditions
converge to similar values. The present analysis will assume the ends to be
clamped with full restraint against axial motion, the conditions analyzed by
Arnold and Warburton in the reference given above. Forsberg's results suggest
that no significant errors will be introduced by this assumption for the geometries
typical of the transfer duct.

Internal pressure can have a significant effect on the natural frequency
response of the cylindrical shell, as shown by Y. C. Fung, E. E. Sechler, and
A. Kaplan, "On the Vibration of Thin Cylindrical Shells Under Internal Pressure,”
Journal of the Aeronautical Sciences, Vol. 24, 1957, pp. 650-651. This effect
seems to be pronounced only for larger number of circunferential waves and thinner
shells, however, and so it is neglected in the present analysis.

General Formulation
R. N. Arnold and G. B. Warburton ("The Flexural Vibrations of Thin Cylinders,"”
Proc. Inst. Mech, Engrs., Londom, Vol. 167, Ser. A, 1953, pp. 62-74) have presented

an approximate solution technique for the free vibration of circular cylinders
which gives results for numbers of circumferential waves greater than or equal
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to two and any number of axial waves greater than or equal to one. The determination
of natural frequencies by their method depends on the solution of the cubic
equation -

A -R,A'+ R, D-R,=0

where
f 1 [ Ega
2rna’\ p(l-v?)
and

A = frequency factor

f = frequency

= mean radius of cylinder

= Young'’'s modulus

gravitational constant

= density

Poisson’s ratio

The coefficients R,.R,,R, are given by lengthy expressions involving the

numbers of axial and circumferential waves, the radius, length, and wall thickness
of the cylinder, and other variables related to an axial wavelength factor. Full
equations are given in Appendix I of the original paper. Solution of the cubic
equation above results in three positive real roots, but only the lowest value-
is of significance to the problem at hand.

Solution of this series of equations for different wave numbers permits
identification of the mode shape corresponding to the lowest natural frequency,
which can change dramatically with cylinder geometry.

The displacements corresponding to these natural frequencies are given by
the following equations:

u= A{—sin("ax)*ksmh( = )}cos(n@)
u--B{cos(ux)*kcosh( x)}sm(ru)
eeclen(2)

for even numbers of axial nodes and

e fcos () keomn( 22 concon
)

a
{sm(% ksinh(?)}sin(n‘:)

w-c{sm("a) ksmh( )}cos(no)

for odd numbers of axial nodes where u, v, and w are the displacements in the
axial, circumferential, and radial directions, ¢ is the angular coordinate, and
n is the number of circumferential waves. The axial wavelength factor pu is given

by

< ODQ mQ
1

+kcosh( )}cos(no)

Kml (Zm-l)’l
a 2
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Here m is the number of axial half-waves (m+1 is the number of axial nodes)
and L is the length of the cylinder. The coefficient k is equal to

. ui

X - Sll’l(;)

[ful
smh-\;&)

The constants 4, B, and C can be determined by solving three simultaneous equations
given in Appendix I of Arnold and Warburton. In general, the radial displacement
will be the largest.

Axisymmetric Vibration

Simpler expressions are possible for axisymmetric vibratory modes, where
displacements are only radial and n=0. Here we take advantage of the similarity
between the governing differential equation for the vibration of a circular
cylinder and the transverse vibration of a beam on an elastic foundation. The
equations are identical if EI for the beam is replaced by the flexural rigidity
D of the cylinder, the foundation stiffness E, is replaced by the quantity Eh/a?,
where h is the cylinder wall thickness, and the mass per unit length pA of the
beam is replaced by the mass per unit area ph of the cylinder. Here D is
calculated as

-__ER*
12(1-v?)
A further simplification is possible because the natural frequencies of a

beam on an elastic foundation, f, are related to the natural frequencies of the
corresponding beam without the elastic foundation, f,, by the relationship

f E
- 2_. L
fl flo 4PA11.2

See J. W. Stafford, "Natural Frequencies of Beams and Plates on an Elastic
Foundation with a Constant Modulus,"” J. of the Franklin Institute, Vol. 284,
1967, pp. 262-264. The mode shapes of the beam are not affected by the addition
of the foundation. Therefore, we may take advantage of expressions developed
earlier for the transverse vibration of the LOX post in order to describe the
natural frequencies and mode shapes of the circular cylinder.

Carrying out the necessary calculations and simplifications, we have for
the circular cylinder

A'D E
fio= 145 anin?
4n¢l'ph 4n‘a‘p

where A,is determined from the information and equations presented in Approximate

Analysis Case 2.V, vibration of the LOX post. The model requires that one end
of the cylinder be rigidly clamped, but allows the cylinder walls at the other
end to be elastically restrained against rotation. In order to consider elastic
end restraint in the cylinder based on the equations developed for the beam, two
modifications are required. The first is the substitution of the flexural
rigidity D for the term E/ when calculating v, The second is a change in the
units of k, to [force*length/length], since the moment in the expression M =k,9
is a meridional bending moment with units [force*length/length]. The final form
of v, then, is

D
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AP n A
| == |- 1 -exp({-| —=2° +
v [(Af”’:zn) H' “p{ (30 D ) H 1
The radial displacement w is given in normalized form by the expression
w,=cosh(B,)+cos(B,)-o,{sinh(B,)+sin(B,))}
where
A, x
L
cosh(A,)-cos(XA,)
" Sinh(x,)-sin(r,)

B‘=

Note that x =0 corresponds to the fixed end.

Harmonjc Forced Vibration

The governing differential equation for the general, non-axisymmetric
vibration of the cylinder is sufficiently complex to prevent any simple solutions
for harmonic forced vibration, and therefore this problem lies beyond the scope
of an approximate method. Some solutions are possible, however, for axisymmetric
vibration (n=0) based on the analogy with a beam on an elastic foundation.

For an axisymmetric, harmonic line loading P, per unit length at the axial .
position x= x, of the form

f(x, )= Poe™

the axisymmetric displacement response at the axial position x=x, is given by
w(x,. t)=a,,P.e"™

where

- = w,(x,)w,(x;)
S ReL(wi-w?)
The outer fiber bending stresses (in the axial direction) are given by
o(x,.t)=y,,Poe"™’

where

v _iéDw,(x,)w,"(xz)
25 h3p L(w?-w?)

and
K 2
w,”(x)= (—L—') {cosh(B,)+cos(B,)~ 0 [sinh(B,)+sin(B,)])

Similar expressions are possible for uniform pressure loadings and systems
with structural damping, by analogy to the expressions given in Approximate
Analysis Case 2.V, vibration analysis of the LOX post.

Random V atio

The response of the cylinder to random axisymmetric excitation is based on
the expressions developed previously for harmonic excitation, following the form
of equations derived for the LOX post (q.v.).
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INPUT VARIABLES:

Geometry _
L - length of shell
a - mean radius of shell
h - thickness of shell wall

Material
E - Young's modulus
v - Poisson’'s ratio
p - density
k, - rotational spring stiffness at the elastically restrained
end of the cylinder

RESPONSE VARIABLES:

fmin - minimum natural frequency and corresponding wave numbers

f(m.n) - natural frequencies corresponding to various combinations
of the wave numbers

w(x) - amplitude of radial displacement response to axisymmetric
harmonic excitation

o(x) - amplitude of outer fiber bending stress response to
axisymmetric harmonic excitation

power spectral density of radial displacements and bending stresses
at various positions along the cylinder for axisymmetric
random excitation

mean square values of the displacements and stresses
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APPENDIX E
Validation of LOX Post Thick Cylinder Model

H.R. Millwater
Southwest Research Institute
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validation of Lox Post Thick Cylinder Model

A validation problem of the Lox Post thick cylinder model
was performed using realistic input data obtained from the first
annual PSAM report, the Rocketdyne division and best engineering
estimates. An advanced first order and Monte Carlo analysis of
the closed form solution were performed. 1In addition, a Nessus
finite element model of a thick cylinder was performed to check
against the closed form model.

The variable inputs for the Lox Post thick cylinder model are
listed in Table 1.

Variables Distribution Mean cov
Inner Radius (Ri) truncated Normal 0.94 1.06%
(x0.03)

Outer Radius (RO) truncated Normal 0.94 4.55%
(-0.002, +0.01)
Young's Modulus(E) Normal 3.4032E+07 2%
Poisson's Ratio Normal .359375 2%
Thermal coefficient Normal 5.65E-6 5%
Internal Pressure(Pi) Lognormal 3077 4%
External Pressure(Po) Lognormal 3232 4%
Internal Temperature(Ti) Lognormal 194 R 1.55%
(3 R)
External Temperature(To) Lognormal 1444 R 1.55%
(15 R)
Reference Temperature(Tref) N/A 530 R 0%

Notes: All mean value data was obtained from the 1st annual PSAM
report and Rocketdyne. The truncated normal limits for Ri and Ro
along with the mean temperatures and COV of Ti and To were pro-

vided by Rocketdyne. Other statistical data such as distribution
types and COV for the other random variables were determined from

default values provided by Dr. Paul Wirsching and are not problem
specific, see Table 2.

The input data for PAAM is jdentical to FPI with the exception
that additional data is sometimes needed. This need is accommo-
dated by adding the necessary response data after the model data.
The keyword *RESPONSE indicates response data is being provided.
In PAAM, the first data is the response function desired (i.e.
Lox post thick cylinder, Lox post tapered beam, Turbine blade,
etc.). In the Lox Post thick cylinder example the response func-
tion is "2AS". The second data is a set of five integers. The
third data is a set of five reals. This information can be used
anyway desired by the user written subroutines. Additional
information can be entered in any format as long as the user
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written routine reads the data properly. For the Lox Post thick
cylinder example the first integer indicates the response type
(i.e. hoop Stress, radial stress or axial stress); the second
integer indicates whether end constraints are imposed ( 11 - yes,
12 - no). The first real indicates the radial position of the
desired response; between 0.0 = RI to 1.0 = RO.

The input file for an Advanced Mean Value solution of the Lox
Post thick cylinder model is listed. The desired response is the

hoop stress at the inner radius without end constraints.

304

*FPI
THICK CYLINDER MODEL (2AS) - USER DEFINED HOOP STRESS
*RVNUM 10
*GFUNCTION 6
*DATASETNM o
*METHOD 1
*PRINTOPT 0]
*ANALTYP 0
*END
*DEFRANVR
RI
0.9400000E+00 0.1000000E-01 0.1000000E+02
0.91 0.97
RO
0.1100000E+01 0.3300000E-02 0.1000000E+02
1.098 1.11
E
0.3403200E+08 0.6806400E+06 0.2000000E+01
XNU
-0.358375 0.00719 0.2000000E+01
ALPH
0.5650000E-05 0.2830000E-06 0.2000000E+01
PI
0.3077000E+04 0.1230000E+03 0.4000000E+01
PO
0.3232000E+04 0.1292800E+03 0.4000000E+01
TI
0.1940000E+03 0.3000000E+01 0.4000000E+01
TO
0.1444000E+04 0.1500000E+02 0.4000000E+01
TREF
0.5300000E+03 0.0000000E+00 0.2000000E+01
*END
*RESPONSE
C LOX POST THICK CYLINDER MODEL
2AS
i 1l 11 0 0 0
0.00000 0.00000 0.00000 0.00000 0.00000
*END



The results of the Lox post FPI and Monte Carlo analyses for hoop
stress at the inner and outer radii are shown in figures 1. and
2. The agreement between FPI and Monte Carlo is excellent for
the closed form model. However, the hoop stress values clearly
indicate that yielding will take place and a nonlinear model
should be developed.

Figure 3. shows the sensitivity at +3 standard deviations of
the random variables for the hoop stress at Ri. The coefficient
of thermal expansion clearly dominates. The internal and exter-
nal radii are insignificant do to their tight tolerances. It
should be pointed out that the COV used for the thermal
coefficient (ALPHA), elastic modulus (E), Poisson's ratio (XNU),
internal and external pressure (Pi and Po) were chosen from
default values given by Dr. Paul Wirsching. This statistical
data is suggestions to be used when problem specific data is not
available. Use of improved statistical data may significantly
alter the results.

Table 2. Default distributions and COV for NESSUS random vari-
ables:

VARIABLE DISTRIBUTION cov
E Normal .02
n Normal .02
G Normal .02
r Normal .02
a Normal .05
Yield stress Wiebull .07
Coords Normal .005
Thickness Normal .005
Tenp Lognormal .05
Press Lognormal .04
Forces Lognormal .02
X-sect area N .007
Inertia L .02
Torsional constant L .01
springs L .02
blade angle - x,Yy,2 N stdev = 0.1°
Material Orientation N
Other Lognormal
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PROBABILITY (STANDARD DEVIATIONS)

LOX POST (THICK CYLINDER)
a PROBABILITY vs. HOOP STRESS(R=RI)

-4 T T T —T T T T T

150.00 170.00 190.00 210.00 230.00
(Thousands)
HOOP STRESS

ADV. FIRST ORDER —— MONTE CARLO
NO END RESTRAINTS

Figure 1.
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PROBABILITY (STANDARD DEVIATIONS)

LOX POST (THICK CYLINDER)

- PROBABILITY vs. HOOP STRESS(R-RO)

P

e

-S T T I

1 1 T i ¥

-230.00 -210.00 -190.00 -170.00 -150.00

O ADV. FIRST ORDER

(Thousands)
HOOP STRESS

—— MONTE CARLO

NO END RESTRAINTS

Figure 2.
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SENSITIVITY FACTOR
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APPENDIX F
Validation Cases

Y.-T. Wu
0.H. Burnside
Southwest Research Institute
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. TITLE:
PROBLENM:

TYPE:

RESPONSES:
FEM MODEL:

VALIDATION CASE 4

Rotating Beam (Timoshenko beam elements)

Determine the probabilistic distributions of ?he
first bending natural frequency and the tip displacement

of a rotating beam

Centrifugal loading and stress stiffening effects
First bending frequency and tip displacement

NESSUS element type 98 - Timoshenko beam element
Number of elements = 10

Number of nodes = 11 (6 degrees—of-freedom per node)

Boundary condition: cantilevered

Figure V4-1. Sketch and FEM model

‘-—.X

ANALYTICAL SOLUTION:

Assumed first bending mode shape: (

Frequency

= SQRT { 1.0384 x E x txx2 / (rxLxx4) + (1.173+4+6.6/L

Tip displacement = r ¥ (£x%x2) x (1%xx%x3) * (1 + Ri/L) / (3.%E)

where

modulus

mass density

width

thickness

length

rotating frequency = 400 rad/sec
inside radius = 4.237 in.

[T IR IR L L]

Drh £

P-
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VALIDATION CASE 4 (Continued)

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES

Number of Random Variables = 5

Variables Distribution Median Coef
Young s Modulus Lognormal 29E+06 psi

Length Lognormal 3.844 in

Thickness Lognormal 0.0416 in

Width Lognormal 1.424 in

Density Lognormal 9E-4 lb-sec?/in¢
Rotating Frequency Fixed 400 rad/sec

Radius Rix Fixed 4.237

*Note: see Figure V4-1

NESSUS CONVERGENCE/PERTURBATION SETTINGS (NESSUS 2.7)

1.
Z.
3.

Modal extraction:

*MODAL 1 0 1

Parameter Data:

*PERT 5 5 O0(Eigenvalue re-solution)
Convergence criteria:

Increment O:

*ITER 0 5
20 1.E-04

Increment 1:

*xITER 0 5
20

Perturbation Settings:
+0.001 standard deviation for length.

+0.1 standard deviations for the remaining random variables.

SOLUTION COMPARISON:
Determipnistic solutions using the mean values of random variables:

1.

Table V4-1 Comparisons of the deterministic solutions

Theory NESSUS NESSUS/Theory
Frequency 853.0 855.6 1.003
Tip displacement 2.4945E-4 2.4829E-4 0.99534
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VALIDATION CASE 4 (Continued)

2. Probabilistic solutions for the frequency and the displacement
at selected probabilistic levels:
Simulation: Monte Carlo (sample size = 500,000)
NESSUS: Mean-Value-First-Order (MVFO) solution
Advanced MVFO solution
(See Figures V4-2 and V4-3)
REMARKS: Date: 2/26/88 NESSUS 2.7 PFEM
1. The perturbation range for the length was selected to be very small
(0.001 std.) to avoid convergence instability.
2. The “adjusted’ exact curves in Figures V4-2 and V4-3 are defined using

the ratios of the NESSUS mean golutions to the theoretical mean
solutions. (see Table V4-1)
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CUMULATIVE PROBASBILITY

CUMULATIVE PROBABIUTY

VALIDATION CASE 4 (Continued)

- Figure V4-2 First Bending Frequency

50%
16X~
2%~
0. 1%
- MVFQO: Meon Volue First Order
Adjusted Frequency = 'Exoct'* 1.003
ooos’ L] ¥ T ¥ T T 1 1 ¥ 1 1
640 680 720 760 800 840 880
FREQUENCY (Rod/Sec)
A Monte Carlo(500000) ¢  MWO
A Adv. MVFO B —— Adjusted ‘Exoct
Figure V4-3 Tip Displacement
99.997%; $
99.87%
97.7%~
84X~
- MVFO: Meon Value First Order
Adjusted Displocement = 'Exoct'®0.9953
1 T 1 1 | 1 H 1] ¥ 1 ] {
24 28 32 3.6 4 4.4 48
(Times tE—4
DISPLACEMENT (in.)
A Monte Corlo(S00000) o MVFQ
A Adv. WVFO B — adjusted ‘Exact
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VALIDATION CASE 8

TITLE: Static Analysis of Spherical Shell

PROBLEM: v spherical shell 1s subiectad to uniftorm internal
pressure2 loads. Detsrmine the probabiliist:c distribuataon ot
the maximum strecss.

TYPE : T+atic. fully correlated pressure loading

RESPONSES: Stress

NESSUS element type 735 Four-node assumed strain axlsymmetrio
Number of elements = 200

Number of nodes = 211 {6 deqrees-of-freedom per node)

iNodes 181 to Z11 constitute 20 collapsed. IZ-—-node elements)

Boundary condition : fived at bacse (node 1 to node Z21)

FEM MODEL:

Fiqure v8 — 1 Sketch and FEM Hedel

211

210

1/a4 MODEL
190

2!

ANALYTICAL MODEL:

Analytical Solution: Smax = 1.2 ¥ (R x F)/h

where R = radius
F = internal pressure
h = thickness

reference: Timoshenko and Woinowsky-Krieger, Theory of Flates and Shells

2nd ed.., pS44
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VALIDATION CASE B8 iContinusd:!

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES

Number of Random Variables = 2

Variables Distribution Mean Coef. of Yariat
Fressure F Lognormal 224 psa 137
Thickness h togriormal .36 1n 5%

NESSUS CONVERGENCE/PERTURBATION SETTINGS
1. Convergence Limit:
Max. number of iterations allowed: o0
Max. allowable rel. error in the residuals: O L0007
2. Ferturbation Range:
+0.1 standard deviations for both random variables.

SOLUTION COMPARISON:
i. Deterministic solution using mean values of random variables:

Stress
Theory 8130.1 psi
“NEssus 76835 psi
“Ratio 1.0

~. Frobabilistic solutions at selected probabilistic levels:
Theory: Exact (Stress is also a lognormal variable)
NESSUS: Mean Value First Order (MVFO) solution
Advanced Mean Value First Order solution (AMVFO)
First iteration solution
(See Figure VB-2)

REMARKS :

1. The perturbation convergence 1imit must be small enough to insure
at least one iteration will be performed in NESSUS perturbation.

2. For the probabilistic solution (see Figure Vv8-2), an adjusted ’"exa

solution was defined by dividing the theoretical solution by a factor

of 1.028. This factor is selected to match the two solutions at the ©

probability level.
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CUMULATIVE PROBABIUTY

VALIDATION CASE B8 (Lontinued)

Figure v8-2 Frobatilistic Analysis Results -
Comparisons of the NESSUS and the Theoretical Solutions

SPHERICAL SHELL

99 .99%:
99 86X
97. 7%
84X~
T T T T T
7 11 13
(Thousonds)
STRESS (PSh)
— A: THEORY + NESSUS MVFO ¢ NESSUS AMVFO
A NESSUS FIRST [TER. —— 8 ADJUSTED EXACT
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VAL IDATION CASE 11

TITLE: E A R I L
FROBLEM B I TR N T S R

TYFE -

RESFONSES: Tr:irams! Froeasiire

FEM MODEL: #ESSL:- = -
pumber o
Numper o - g
Eounaary
il oy
1,Z modei

ANALYTICAL SOLUTION:

F =

AE/4{1-v™2)3%k{h/R;"Z

where F = critical pressure
E = modulus
h = thickness
R = radius

<
|

Foisson's ratio

Reter=ance: R, J. Roark and W. €. Young, Formulas for Strecs
Fifth edition, p. 95&, McBraw Hill Book Co.

'

m
3
a
)]
o+
B
i
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VALIDATION CASE 11 -7 L7 .=u

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES

Lotz e oF flandom Variazbisz S«
Gretributlicon Mac L = Coet. of W irnsnihln
T E _ogrisrmal 1ifz=0s oz =
Lranormal i3, 1 i :
Dotarminlsils 1o in. -
ratic Detsrminlstic  O.3 -

NESSUS CONVERGENCE/FERTURBATION SETTINGS (ME3ZSULE 2.7 Versich

i. In FARAMETER DATA *FERT = 2
In MGDEL DATA ¥ITER O 2
10 G, iy

=, Ferturbkbation Range:

+i0 1 stancard deviationes for both random variables.

SOLUTION COMP
1. Determinis

-+ D
Py
(]
[1)]
)
Pl

eolution ueing mean values of rarndom variables:

~. Probabilistic solutions at selected probabilistic levels:
Theory: Exact CDF based on analvtical solution
NESSUS: (Jeing FFEM module)

Mean—-Value-Firset-0Order {MVFO) =solution
Advanced MVFO solution
{Sees Figure 2 for comparisoan)

REMARKS:

i. In Fig. 2, an adjusted ‘exact’ probabilistic solution was derived by
maxltiplying the exact solution by a factor of 1.1097. This factor 1is
the ratio of the FEM solution to the exact solution, computed at the
median values.
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Cumulative Probaobiiity

VALIDATION CASE 11 7 oy ir e

Figurs
Shell Buckling
50.0%:
15.9%
2.3%~
0.13%
0.003%
¥ ] L ¥ 1 T 1 L) 4
2.1 2.3 25 2.7 29 3.4
Critical Pressure (psi)
0O v +  AMVFD A —— ADWSTED EXACT B — Bacr
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VALIDATION CASE 12
. TITLE: Random Vibration Analysis of Cantilever Beam

PEOBLEM: Determine the probabilistic distribution of the rcot-mean-
square of the tip displacement

TYPE: Base-excited random vibraticn
RESPONSES: Tip displacement root-mean-square
FEM MODEL: NESSUS element type 98 - Two-node Timoshenko beam element

Number of elements = 20
Number of nodes = 21 (6 degrees-of-freedom per ncode)

Boundary conditions: Base-excited cantilever

Figure V12 - 1 FEM model

DN

[000 RAD/S

ANALYTICAL SOLUTION (single—degree-of—freedom approximation):

Mean-square displacement

= 1.7875 x (L& x WA %X rl1.5) / (E1.5 *%t3 *xXi)

where L = length
Wa = acceleration (power) gpectral density
r = mass density (per unit volume)
E = modulus of elasticity
t = thickness
Xi = damping factor

Reference: Clough, R. W., and Penzien, J., Dvnamics of Structures,
McGraw-Hill, New York (1875)
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VALIDATION CASE 12 (Centinued)

DEFINITION OF RANDOM/DETERMINISTIC VARIABLES

Number of Random Variables = 8

Variables Distribution Median Coef. of Varia
Young s Modulus Lognormal 126 psi 3%
Length Normal 20 in 1%
Thickness Normal @.98 in 1%
Widthx* Normal 1.@ in 1%
Density Lognormal 2.5-4 lb-sec?2/in4 2%
Damping Lognormal @.05 10%
Acceleration PSD Lognormal 1.0 in2/sec?3-rad 10%
PSD Cut off freq.x Normal 100@ Rad/sec 190%

*Note: These two variables have no random effect on tip displaceme

NESSUS CONVERGENCE/PERTURBATION SETTINGS
1. xITER %)
20 2.201
2. Perturbation settings:
+@.1 standard deviations for all random variables.

SOLUTION COMPARISON: (NESSUS 3.1)
1. Determipnistic solution using mean values of random variables:

Root-Mean-Square Displacement

Theory 5.384E-04 in
NESSUS 5.593E-@4 in
NESSUS/Theory 1.2388

2. Probabiligtic solutions at selected probabilistic levels:

Simulation: Monte Carlo (sample size = 100,000)
NESSUS: Mean-Value-First-Order (MVFO)

Advanced MVFO (AMVFO)

First iteration

(See Figure V12 - 2)

REMARKS: (NESSUS 3.1, September 1988)
1. The mean first- and second-mode frequencies are 498 rad/sec and 3!
rad/sec, respectively. The cutoff frequency (1000 rad/sec) was

chosen to excite, approximately, only the first mode.
2. The perturbation solutions are based on re-calculations.
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CUMULATIVE PROBABILITY

VALIDATICGN CASE 12 (Continued)

Figure V12 - 2

RANDOM BASE EXCITATION

v9.997 %— —
-
99.865 %
97 .725%
84.134%
EXACT = MONTE CARLO SOLUTION * 1.0388
So'ooom 1 1] 1 T 1 1 I Ll 1 1 1 ] T i
0.S 0.54 0.58 0.62 0.66 0.7 0.74 0.78
(Thousandths)
RMS of Tip Displacement (in.)
—— "EXACT’ © MVFO a AMVFO ¢ IST ITER.
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APPENDIX G
PBEM Example Problem

H.R. Millwater
Southwest Research Institute

325

w&&_ INIEHTHONALLY IRANE PRECEDING PAGE BLANK NOT FILMED






PBEM EXAMPLE PROBLEM

The PBEM example problem is to determine the probabilistic
response of a cantilever beam of dimensions 10 x 0.99 x 1.0 with a
constant axial end load. The mode! consists of & elements with 20
nodes and is shown in figure ?. The response variable is the end
axial displacement. The sensitivity of the response variable to the
random variables was determined with PBEM. The relavent data was
extracted from the perturbation data base by PREFP1 and
probabilistic analysis was performed with FPI. The random variable
input data is listed in table ?.

Table ? Definition of random/deterministic wvariables

Variables Distribution Mean cov
end load normal 100.0 psi 107
Elastic modulus normal 10.E+6 10%
length normal 10.0 in. 10%

Response variable - end axial displacement

Results

Figure ? shows the mean value §irst order (MVFO) solution for
PBEM along with the analytical solution. In addition, the advanced
mean value first order solution (AMUFO) at the +3.0 standard
deviation level was computed by resolving the problem used the most
probable design points as input. The results agree well with the
analytical solution. This technique is identically equivalent to
the FEM procedure. Thus, the same analysis technique can be used
for both FEM and BEM.

327

PRECEDING PAGE BLANR Gl FILMED

et 33l maaTiony Raw



APPENDIX 2

PBEM input File

(comments are listed on the right in parenthises)

*##ECHO
**CASE CONTROL

TITLE PBEM TEST OF CANTILEVERED BEAM - L=10,T=.99,W=1.0

TIMES 1.0000
**MATERIAL PROPERTY
ID MAT!
1SOTROPIC
TEMPERATURE 70.0000
EMODULUS 1.00000E+07
POISSON .000000
##GMR
1D REG1
MAT MATI
TREFERENCE 70.0000
POINTS
1 0.00000 0.4950000
2 10.00000 0.4950000
3 10.00000 -0.4950000
9 0.00000 -0.4950000
5 5.00000 0.49S
é 10.0 0.0
7 5.0 -0.495
8 0.0 0.0
9 0.00000 0.4950000
10 10.00000 0.4950000
11 10.00000 -0.4950000
12 0.00000 -0.4950000
13 5.00000 0.495
14 10.0 0.0
15 5.0 =0.495
16 6.0 0.0
17 0.0 0.495
18 10.0 0.495
19 10.0 -0.495
20 0.0 =-0.495

SURFACE SURF11

328 '

0.5000
0.5000
0.5000
0.5000
0.5
0.5
0.5
0.5
-0.5000
-0.5000
-0.5000
-0.5000
-0.5
~0.5
-0.5
-0.5
0.0
0.0
0.0
0.0



TYPE QUAD

ELEMENTS

25184735$6
1521810 13 9 17

2 6319 11 14 10 18
37420 12151119
11 15 12 16 9 13 10 14
48117 9 16 12 20

o U H W N -

NORMAL 1+
#%BCSET
1D TRACTION
VALUE
GMR REGI
SURFACE SURF11!
ELEMENTS 3
TIMES 1.0000
TRACTION 1
SPLIST ALL
T 1 1.00000E+02
##BCSET
10 RIGBODX
VALUE
GMR REG!
SURFACE SURFi1
ELEMENTS é
TIMES 1.0000
RIGID 1
#%BCSET
1D RIGBODY
VALUE
GMR REG!
SURFACE SURF11
ELEMENTS é
TIMES 1.0000
RI1GID 2
##BCSET
ID R1GBODZ
VALUE
GMR REG!
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SURFACE SURF!1
ELEMENTS é
TIMES 1.0000
RIGID 3
#*%PROB (START OF PROBABILISTIC DATA)
#%DEFINE | (RV., | = end load)
100.0 10.0 (mean, standard deviation)
BCSET (format identical to
1D TRACTION (deterministic)
VALUE
GMR REGI
SURFACE SURF11
 ELEMENTS 3
TIMES 1.0000
TRACTION 1
SPLIST ALL
T 1 1.00000E+00
#%DEFINE 2 (R.V. 2 = elastic mod)
10000000, 1000000. '
MATERIAL PROPERTY

1D MATI
ISOTROPIC
TEMPERATURE 70.0000
EMODULUS 1.00000 (perturb only Elastic Mod)
POISSON .000000 (factor for Poisson = 0)
#*%DEFINE 3 (R.V. 3 = beam length)
10.0 1.0
GMR
1D REG!
MAT MATI
TREFERENCE 70.0000
POINTS (perturd only length)
1 0.00000 0.00000 0.0000
2 1.00000 0.00000 0.0000
3 1.00000 0.00000 0.0000
4q 0.00000 0.00000 0.0000
] 0.50000 0.0 0.0
é 1.0 0.0 0.0
7 0.5 0.0 0.0
8 0.0 0.0 0.0
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9 0.00000 0.00000 0.0000
10 1.00000 0.00000 0.0000
11 1.00000 0.00000 0.0000
12 0.00000 0.00000 0.0000
13 0.50000 0.0 0.0
14 1.0 0.0 0.0
15 0.5 0.0 0.0
16 0.0 0.0 0.0
17 0.0 0.0 0.0
18 1.0 0.0 0.0
19 1.0 0.0 0.0
20 0.0 0.0 0.0
SURFACE SURF11
TYPE QUAD
ELEMENTS
1 25184736
2 1521810 13 9 17
3 2 6319 11 14 10 18
4 37420 12 15 11 19
5 11 15 12 16 9 13 10 14
é 481179 16 12 20
NORMAL 1+
##PERT $
1 0.1 1 (define random variable
##PERT 2 number, perturbation factor
2 0.1 1 and solution type for each
#%#PERT 3 perturbation - solution type
3 0.1 1 1 = resolution)
##END
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APPENDIX H
Verification Studies of the Advanced Boundary Element Code BEST3D

S.T. Raveendra
T.A. Cruse
Southwest Research Institute
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1.0 SUMMARY

This report describes the verification studies of BEST3D [1l] code for
efficiency and accuracy. The boundary element code was run on CRAY X-MP at
NASA LeRC and the results were mostly compared to the finite element results
obtained using a MARC program [2]. Unlike the FEM code, the boundary element
code was not optimized to run on CRAY, thus, the run time comparison does not
give a good indication of the efficiency of the BEM code. Nevertheless, the
results give a good guide as to the improvements necessary to make a general
purpose computer program such as BEST3D to be competitive to FEM codes.
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2.0 VERIFICATION RESULTS
2.1 Analysis of T-Joint Beam

TITLE: TJOINT

PROBLEM: Elastic Stress Analysis of T-Joint Model with a semi-elliptic
crack at the weld

j7us

375 —— T

/ s = 0.128
{ /6(1 1

--J c =025 L-—-

E = 30 x 10¢
v=20.3

T-Joint Beam with Elliptic Flaw

Figure 1.
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BEM MODEL: Number of Regions - &
_Number of Symmetry - O

Element Type - Quadratic
Number of Elements - 212
Number of Nodes - 560

Region IV

Region ! 4

Crack Front

Figure 2. Multi-region BEM Map for T-Joint Beam
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COMPARISON MODEL:

Two-Dimensional Plane Strain Model Using BIECRX code (3]

Element Type - Linear
Number of Elements - 143
Number of Nodes - 144

3.75in.

0.25 in.

0.25 o 0.25

—{ 0.5 pem—

Figure 3. Plane Strain BEM Map
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SOLUTION

COMPARISON:

Solution Time-= 571 sec

K,(3DIX(2D)

y
y -
’
-
* +
*
- ® BEST3D
u + CRX3D
o.s " J 3 . N [}
0 20 40 60 80

Clliptical Angle, ¢

Figure 4. Mode I Stress Intensity Factor Comparison
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REMARKS:

’

Figure 4 shows the mode I stress intensity factor along the crack front
normalized with respect to two-dimensional plane strain solution. The results
indicate that the mode I response is similar to the plane strain response at
the interior of the body, but the stress intensity factor at the surface is
higher, as expected. The BEST3D results shown are by using standard quadratic
elements, whereas, the CRX3D {3] results are due to the same three-dimensional
model with special crack-tip elements. Attempt to use quarter point element
at the crack front by moving the mid-side node to quarter point was not
successful since the BEST3D program failed in subroutine ERCTRL. This was due
to the fact that some of the source points were too close to some of the field
elements. The sub-segmentation scheme employed estimated the size of the
subdivided element dimension as zero. The manual does to give any indication
as to the size of the element that could be used with the code. Also no error
message was given to enable the user to find the area of difficulty in the

mesh.

An error in subroutine GEOMAT of the code was detected while verifying this
model. The part of the code that searches for the largest dimension was as
follows:
40 XLEN = O
DO 20 I = 1, NNODET
DO 10 J=1,NDEGF
IF (ABS(ARRA(J,I)).LE.XLEN) GOTO 10
XLEN = ARRA(J,I)
10 CONTINUE
20 CONTINUE
The corrected statements are as follows:
40 XLEN = O
DO 20 I - 1, NNODET
DO 10 J=1,NDEGF
IF (ABS(ARRA(J,I)).LE.XLEN) GOTO 10
XLEN = ABS(ARRA(J,I))
10  CONTINUE
20 CONTINUE

Without this modification, it is possible for XLEN to have a final value of
zero. '

Further, a modification to the tolerance value in subroutine COMCYC was
necessary to run this model. This subroutine matches the nodes of interfaces
by checking the difference between the distance between nodes at the

interfaces to an absolute value of 0.01. When the distance between the nodes
was smaller than this tolerance, the wrong nodes were matched at the
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interface. For the purpose of running this model, we used a tolerance value
of 0.001. A relative, rather than absolute value may be used to eliminate
this problem.

2.2 Analysis of Double Notch Specimen

TITLE: DOUBLE NOTCH
PROBLEM: (1) Double Notch Model Subjected to Traction Loading
(a) Linear Boundary Elements [2.1]
(b) Quadratic Boundary Elements [2.2]
(2) Double Notch Model Subjected to Displacement Loading
(a) Linear Boundary Elements {2.3]
(b) Quadratic Boundary Elements [2.4])
(3) Double Notch Rotated About the Z-Axis [2.5]

20

Max Stress

LOAD E - 78.261 x 106

v = 0.30435

Figure 5. Double Notch Specimen
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BEM MODEL: Number of Regions -1
_ Number of Symmetries - 2
Table 1
2.1 2.2 2.3 2.4 2.5
Elements 24 24 24 24 .24
Nodes 23 69 23 69 69
Figure 6. BEM Map for Double Notch
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SOLUTION COMPARISON:

Stress Concentration Factors - Traction Loading

Table 2
Kt CPU (sec)
BEM (2.1) 14 .53 11
BEM (2.2) 17 .64 36
FEM 15.33* 49

: Stress Concentration Factors - Displacement Loading

Table 3
Kt CPU (sec)
BEM (2.3) 6.72 11
BEM (2.4) 7.66 36
FEM 6.45% 49
Table 4 :
Omux/94pp | CPU (sec)
BEM (2.5) 15.96 36
FEM 13.82% 45+

* at Gauss points

+ smaller output selected
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REMARKS:

The stress concentration factors indicate that quadratic modeling increases
the accuracy of the problem; however, the use of higher interpolation results
in longer run time. The lower values of FEM stress concentration factors were
partly due to the evaluation of the quantities at the nearest integration
point compared to BEM values evaluated at the surface nodal point. The BEM
run time for this model compares favorably with the FEM times. A primary
advantage of BEM over FEM for this problems is the ease of generating and
verifying the BEM surface model.

There was an incompatibility between the program and input manual in Geometry
Definition Section (Section 5.5). For linear elements, the keyword according
to program manual was LINE, whereas, the program recognized LINI as the
keyword for linear elements. When ran with the wrong keyword, the program
executed without any error message using the default option. It is useful if
the program warns the user when non-recognizable keywords are encountered.

The record length of the direct access file FT32 was too small and had to be
increased from 18,000 characters to 108,672 characters in subroutine BCASSM.

345



2.3 Analysis of Turbine Blade Model
TITLE: - TURBINE BLADE

PROBLEM: Free Vibration and Quasi-static Analysis of Turbine Blade
Model with Body Force Loading
(1) Turbine Blade Model Subjected to Pressure Loading

(a) Linear Boundary Elements {3.1)

(b) Quadratic Boundary Elements [3.2)]
(2) Turbine Blade Model Subjected to Centrifugal Loading

(a) Fixed Boundary Condition {3.3]

(b) Spring Boundary Condition {3.4])

(3) Free Vibration Analysis of Turbine Blade Model {3.4)

’——-------

>
-
__-
—‘

U F E = 18.4 x 106
v = 0.386

D E p = 0.000805
Q= 39361

Figure 8. Turbine Blade Model

346



BEM MODEL: Number of Regions - 3
_Number of Symmetry - 0
Table 5
3.1 3.2 3.3 3.4 3.5
Elements 333 333 359 359 359
Nodes 339 999 1080 1080 1080
additional row of
elements for
centrifugal
loading model
//

Figure 9. Multi-Region BEM Simulation of Turbine Blade Model
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COMPARISON MODEL: MARC Finite Element Program

_ Element Type - MARC Element =7 (8 & 6 noded elements)
Number of Elements - 1456
Number of Nodes - 2454
-
a
|~ ]
‘rk //V h\'\'\'--....«
//// ] \\ini
LN
//
\N.n / /// \'Nh
e
\ /j S
/

Figure 10. FEM Mesh for Turbine Blade Model
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SOLUTION COMPARISON:

Table 6 : Pressure Loading
Oex/0Ocpo CPU (sec)
A B c D E F
BEM (3.1) 67 -6 43 -89 41 -20
BEM (3.2) 8l 12 33 -177 79 -21
FEM 85 15 40 -134 118 -19
Table 7 : Centrifugal Loading - Fixed Base
0.:/0app CPU (sec)
o) P Q
BEM (3.3) -0.048 0.701 0.137 1994
FEM 0.094 0.605 0.204 83
Table 8 : Centrifugal Loading - Spring Base
0,2/0ap, CPU (sec)
0 P Q
BEM (3.4) -0.115 0.692 0.101 1999
FEM 0.080 0.600 0.214 82
Table 9 : Free-Vibration
Mode 1 Mode 2 Mode 3 CPU (sec)
BEM (3.5) job aborted
FEM 27382 46296 55236 426
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REMARKS:

Table 6 compares the vertical stress at the fixed base (see Figure 8) due to
pressure loading normal to the surface at the airfoil. The results are again
improved by using quadratic boundary elements; the results due to quadratic
elements compare well with the FEM results. Unlike the BEM results, the FEM
values were evaluated at integration points nearest to the corresponding

surface points.

The stresses at the airfoil near the interface due to the rotation of the
turbine blade about the horizontal axis are compared in Table 7 and 8. The
results in Table 7 were obtained assuming fixed boundary conditions at the
base, while the results in Table 8 were due to spring boundary conditions.

The BEM run times for the turbine blade model are considerably larger than the
corresponding times using FEM. These were mainly due to the need to use much
finer boundary element mesh than necessary for boundary data interpolation
necessitated by the complexity of the geometry. A detailed investigation of
the run time efficiency is given in Section 3.

For the purpose of comparison with finite element method, an additional row of
elements at the airfoil near the interface was created. While this did not
cause any problem for the centrifugal loading case, it was not so for the
pressure cases (3.1 and 3.2). The application of pressure normal to the
airfoil surface was simplified by the use of local boundary conditions which
permitted the imposition of load with respect to local coordinates. While the
user’'s manual specified the maximum number of points with local coordinates
system definition as 500, the code was not compatible with this number. In the
code, it appears that the local coordinate system definition nodes are stored
by element, thus the limit appears to be dependent on the number of elements
with local coordinates system. The pressure loading example was thus run
without one row of elements at the interface.

A variety of problems were encountered in running the turbine blade model for
natural frequency analysis. Initially, it was noted that the number of points
allowed per sub-region for free-vibration analysis, in subroutine BMASS, was
smaller than the value specified in the user’s manual. This was increased to
the required size to permit testing of turbine blade model. The job using
modified code aborted with the following error message:

RECORD LENGTH EXCEEDED

- BEGINNING OF TRACEBACK

- $TRBK WAS CALLED BY IOERPS% AT 3104125d

- IOERP% WAS CALLED BY $$RUVs AT 3112247d

- 8$RUVS WAS CALLED BY BMASS AT 3054736a(LINE
NUMBER 191)

- BMASS WAS CALLED BY BCASSM AT 3072322d4(LINE

READ ON UNIT FT19 10020
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NUMBER 103)
. BCASSM WAS CALLED BY BEST3D AT 3070700c(LINE
NUMBER 88)

An attempt to correct this error was unsuccessful. The failure occurred after

7000 seconds of execution time.
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2.4 Analysis of Hollow Sphere
TITLE: - HOLLOW SPHERE

PROBLEM: Elastoplastic &ralysis of Hollow Sphere due to Internal Pressure
(1) Iterative Solution Procedure
(a) Internal/External radius ratio = 0.5 (4.1}
(b) Internal/External radius ratio = 0.8 (6.2)
(c) Internal/External radius ratio = 0.9 [4.3)
(2) Non-Iterative Solution Procedure
(a) Internal/External radius ratio = 0.9 [4.4)
(3) Particular Integral Approach
(a) Internal/External radius ratio = 0.9 [4.5]

BEM MODEL: Number of Regions - 1
Number of Symmetry - O
Number of Nodes - 68
Number of Elements 22 (8-noded, quadratic)
Number of Cells - 5 (20-noded, quadratic)

2b
2a

G = 1000
v =03
g, = 600
H =00

Figure 11. BEM Model for Hollow Sphere



COMPARISON MODEL: Analytical Results (5]
SOLUTION COMPARISON:

Table 10 : Solution Times

4.1 4.2 4.3 4.4 4.5

CPU 214 137 132 134 67
(sec)

HOLLOW SPHERE
b/a=2

16

1S -
L4 COLLAPSE LOAD

13

| R

0508 -
08 -
07 -
06 -
05 - \
04 -
03 -
02 -
01 -

o 0.2 04 0.6 0.6 1 12 1.4

Eu/0 8
O BEST3O ——— THEORETICAL

Figure 12. Load-Deformation Response for Hollow Sphere (b/a = 2)
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HOLLOW SPHERE

b/a=5.4
0s
- 04s __
~ COLLAPSE LOAD
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Figure 13. Load-Deformation Response for Hollow Sphere (b/a = 5/4)

HOLLOW SPHERE

Wa=10/8
c24 .

Pl
- BREBEEEeBEEEER

1 2 14

Figure 14. Load-Deformation Response for Hollow Sphere (b/a = 10/9)
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Plastic Collapse Response of Thin Hollow Sphere
Using the Variable stiffness Procedure

HOLLOW SPHERE
»/80/9

COLLAPSE LOAD

Plastic Collapse Response of Thin Hollow Sphere
Using Particular Integral Procedure
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REMARKS:

Three different boundary element models were selected to represent thick and
thin hollow spheres. 1In all three cases, the outer radius was kept at 20 and
the inner radius was changed such that the ratio of outer radius to inner
radius varied from 2 to 10/9. The BEM map shown in Figure 1l corresponds to a
b/a radius of 2. For the thinner models, the distance along the thickness was

scaled accordingly.

Figures 12 - 16 show the load displacement response due to internal pressure.
The displacements were monitored at the outer radius of the spheres. The
comparison of BEST3D results to analytical values indicate excellent accuracy
of the BEM procedure. A comparison of time for cases 4.3 and 4.4 indicate
that computing time for the iterative and non-itertaive solution procedures,
are essentially the same for thi: :xample, however, the results based on
particular integral techniques I: the most efficient computationally. The
difference in accuracies between various solution procedures were too small to

be noticeable.

The requirements for volume modeling are not explained clearly in the user’'s
manual. The manual does not specify whether the volume cell and surface
element nodes need to be matched. The code includes two types of volume
cells; quadratic cells and constant plastic strain cells. However, the user’s
manual wrongly implies the constant strain cell as linear cell.

A solid sphere or cylindrical model could not be modeled using a segment of
the body as was done for hollow sphere. The local boundary conditions at zero
radius is not permissible in the current code and gives erroneous results.
This limitation is not pointed out in the user’s manual.

Convergence of solution is not identified by the code for a non-iterative
solution procedure. Due to this, a collapse load in Figure 15 was assumed,
based on displacement solutions. Inclusion of an automated scheme to check
collapse is essential for general usage of the non-iterative procedure.
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2.5 Analysis of Cantilever Beam

TITLE: - CANTILEVER BEAM
PROBLEM: Transient Analysis of Cantilever Beam
(1) Free Vibration Analysis {5.1]
(2) Forced Vibration Analysis [5.2)
E - 30 x 106
v=20.3

p = 0.0007339

Figure 17. Cantilever Beam Model
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BEM MODEL: Number of Regions - 1
_ Number of Symmetry - O

,\ )
a \ \\ \
e

a) BEM Map 1

T
e

L LS

b) BEM Map 2

N W W W
N N N
A N N N W
\ \ \ \ A\ A
// //’ // <//' /(L.///

c) BEM Map 3

Figure 18. BEM Maps for Cantilever Beam Model
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MARC Finite Element Program

COMPARISON MODEL:

: B8 noded Linear Elements

Element Type

-]

/
J

VA

[

a) FEM Map 1

S T O O . W O W

[ W W U W

3

1

ANERNNELENERENEE RN

L a4

2 I I L L i dd

b) FEM Map 2

FEM Meshes for Cantilever Beam Model

Figure 19.
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SOLUTION COMPARISON:

- Table 11 : Natural Frequencies from BEST3D
CPU(sec)| Nodes/
Natural Frequencies CRAY |[Elements
X-MP
Mode 1| Mode 2 | Mode 3 [Mode 4|Mode 5
BEM-1 2683 5412 13473 | 16749 24918 14 44/14
BEM-2 2807 5310 12728 {16210 | 24262 48 86/28
BEM-3 2836 5288 12591 | 15889 | 24061 365 206/68
Table 12 : Comparison of Natural Frequencies
CPU(sec) Nodes/
Natural Frequencies VAX 8700 | Elements
Mode 1|Mode 2|Mode 3|Mode 4|Mcde 5
BEM-1 2683 | 5412 | 13473 | 16749 | 24918 336 44/14
FEM-1 3033 | 5449 | 1319117227 | 25141 158 195/96
FEM-2 2885 | 5354 | 12778 | 16224 | 24522 801 1125/768
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REMARKS:

Three BEM and~two FEM models were generated as shown in Figures 18 and 19,
respectively. Table 11 compares the first five normal modes of natural
frequency obtained from BEST3D runs. The results indicate that considerably
accurate results can be obtained by using a crude model as the first BEM map
in Figure 18. An attempt to run the FEM models using MARC on CRAY was
unsuccessful as the results did not converge. However, the results from the
same FEM models converged on VAX 8700 using the VAX version of the MARC
program. To compare the results, we ran BEM model 1 on VAX 8700 as well.
These results indicate that the BEM approach is a viable alternative to FEM
procedure for free-vibration analysis. It should be noted that in the current
FEM modeling, the cantilever beam was modeled as a continuum. The FEM
approach using beam elements for this problem will be considerably cheaper,
nevertheless, for general three-dimensional bodies where continuum modeling is
required, the BEM method is competitive.

The forced vibration analysis of cantilever beam model using the boundary
element method procedure was not completed due to unrealistic constraint in
the BEST3D code input structure for time-domain forced vibration analysis. The’
problem we selected for the analysis corresponds to the application of the
load to a maximum value in a very short time followed by gradual relaxation of
load. 1In BEST3D code, the load needs to be applied such that the time
interval that can be used during the analysis should be less or equal to the
loading time. Since there is no facility to change this time step at later
times, we were required to use the same time step throughout. This requires
the use of an unrealistic number of time steps, thus, the forced vibration
analysis for the cantilever beam model was not completed.
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3.0 INVESTIGATION OF NUMERICAL INTEGRATION OF SURFACE INTEGRALS
3.1 Alternative Integration Schemes

Consider the run time divided broadly according to various tasks during the
solution of a double notch specimen analyzed in Section 2.1. The run times
for various tasks on VAX 8700 for a model of 69 nodes and 24 quadratic
boundary elements is as follows:

(a) Surface integration time = 336 sec
(b) Initial matrix assembly time = 11 sec
(c) Solution time = 33 sec

This example illustrates that about 88 percent of the total computer time was
spent on evaluating the discretized boundary integrals. An efficient and
accurate procedure for the evaluation of surface integrals is, therefore,
essential for the BEM to be competitive to FEM. The BEST3D code uses a
sub-segmentation scheme for the evaluation of non-singular integrals and
transformation based on polar coordinates for singular integrals. The
sub-segmentation scheme is essentially based on finding the element dimension
to satisfy a specified error tolerance derived from approximate Gaussian error
rules. The sub-element evaluation also considers the distance between the
source point and the element over which the integration {s performed.

An alternative procedure proposed recently in the context of surface inctegral
evaluation of boundary integral equations is the variable transformation
procedure. In this procedure, the integral points are weighted towards the
singular node by a transformation procedure, thus, no element subdivision is
used. In the current investigation a third-degree polynomial transformation
is used [6].

The variable transformation procedure weights integration points according to
the distance between the source point and the element of interest; the
weighting becomes less pronounced for elements that are far away from the
source point. The transformation procedure requires additional operation than
the operations from regular application of integration rules. To avoid
unnecessary calculations for elements that are beyond a certain distance from
the source point regular integration procedures can be used. Thus, a regular
and variable transformation procedures can be combined such that regular
integration is performed for far elements and variable transformation
procedure is used for pear elements.

Initially, we considered a hollow sphere with an external radius to internal
radius ratio of 2 subjected to internal pressure. The BEM map used is shown
in Figure 11. The model was run using subdivision (SD), variable
transformation (VT) and variable transformation combined with regular
integration (VR) procedures. Figure 20 shows the normalized hoop stress along
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the radius of the sphere using various procedures; the results are essentially
identical. The integration times due to various procedures are summarized in
Table 13 indicating a slight reduction in computing time using the VR

procedure.

Table 13 : Comparison of Integration Procedure for Hollow Sphere

Integration time
CPU (sec)
SD 129
vT 126
VR 116

The cantilever beam model shown in Figure 18 (BEM map 2) fixed at one end and
subjected to a shear loading on the other end was run using various
integration procedures. The results for normal stress the support short in
Figure 21 are essentially identical for different integration procedures. The.
computing time shown in Table 14 also indicates a small advantage of the VR

procedure.

Table 14 : Comparison of Integration Procedure for Cantilever Beam

Integration time
CPU (sec)
SD 185
VR 175

The results using variable transformation procedure for the hollow sphere and
cantilever problems does show any substantial saving in computer times since
the boundary discretization used in the above models were regular, thus, the
sub-division requirement is negligible. To see the effect of integration
procedures on a graded mesh we analyzed a circular crack model shown in Figure
22. The computing time shown in Table 15 indicates a saving of more than 25
percent using the VR procedure. However, the stress intensity factors shown
in Table 15 indicates considerable error using the VR procedure. However, the
results using VR procedure also was angularly dependent, thus, they do not

meet acceptable accuracy requirements.
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Table 15 : Circular Crack Results and Computing Times

K,/0 Integration time
CPU (sec)
SD 1.02 959
VR 1.17-1.34 702

Currently, we do not have a way to estimate the error in variable
transformation procedures. The variable transformation results, thus, does
not seem to be as reliable as the subdivision method as implemented currently.

3.2 Error Tolerance on Efficiency and Accuracy

While the subdivision algorithm implemented in BEST3D indicates high accuracy,
the computing time in relation to overall solution time is too high. One
factor that dictates the degree of subdivision is integration error tolerance.
Here, we investigate the effect of error tolerance on computing time and
accuracy. The default value of error tolerance used in BEST3D code is 0.001.

~ Initially we examined a double notch specimen by changing the error tolerance
from 0.001 to 106. The results for stress concentration factor and
integration time in Table 16 indicates that while the change in stress
concentration factor was negligible the computed time was reduced almost by a
factor of 2.

Table 16 : Effect of Error Tolerance - Double Notch Model™

Kt Integration time
CPU (sec)
0.001 7.06 273
0.01 7.06 221
0.1 7.06 185
1 7.06 171
100 7.07 152
106 7.08 144

* symmetric faces were modeled
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Finally, we analyzed the circular crack model shown in Figure 22. The results
in Table 17 again indicate that the value of error tolerance hardly affect the
accuracy of the solution but improves the computing time substantially.

Table 17 : Effect of Error Tolerance - Circular Crack

K,/a Integration time
CPU (sec)
0.001 1.02 959
1 1.02 689
1000 1.02 645

4.0 CONCLUDING REMARKS

The boundary element results using BEST3D computer program for the cases
tested indicated high accuracy of the code. Some areas of concern detected
while running the code are presented with result in Section 2. While the code
is efficient for the analysis of bulk structures such as double notch
specimen, the efficieny for thin structures such as the turbine blade mode is
not very encouraging. It appears that a major area for improvement is the
numerical evaluation of discretized integrals. A limited study reported in
Section 3 shows that while the subdivision algorithm used in BEST3D code is
reliable, it is not very efficient, especially when the default error
tolerance is used. A reliable and efficient numerical integration procedure
for general three-dimensional boundary integrals is still lacking. Further
effort in devising alternative schemes such as a combination of analytical and
numerical procedures is desirable.

While the evaluation of discretized integrals is one problem area, it is not
the only one. For example, consider the turbine blade model problem examined
in Section 2.3. The run time for the model can be divided broadly into three

parts (e.g., Case 3.4):

(a) Surface integration time = 718 sec
(b) Initial matrix assembly time = 534 sec
(c) Solution time = 743 sec

In analyzing a thing structure such as turbine blade model, the task of
evaluating numerous near singular integrals imposes a heavy burden. In all
these analyses, we used the default value for the error tolerance, however,
the results reported in Section 3 indicate that the accuracy of the results is
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not diminished considerably by the use of higher error tolerance. Thus, the
surface integration time may be reduced by using a higher error tolerance than

the default value used in Section 2 analyses.

It is also evident that the computing time for matrix assembly and solution is
also substantial for a large scale problem such as the turbine blade model.
The matrix manipulation involved in these two tasks may be made substantially
efficient by rearranging some matrix operation and optimizing the code.

Finally, the BEST3D code used was essentially developed for mini-frame
computer, thus, does not take advantage of the architecture of the super
computer used for the current run time comparison. Assembly and solution of
BEM system can be improved considerably by optimizing the code for CRAY
computers. Therefore, an efficient, reliable, and accurate numerical
integration procedure as well as optimization of the code are necessary to
make a reasonable comparison of general purpose BEM code such as BEST3D to
corresponding FEM codes that are specifically tailored for CRAY.
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